
- •Сборник проектных заданий к спецкурсу: «Оптические свойства твёрдых тел». Аннотация
- •Проект № 1
- •Цель работы:
- •Актуальность:
- •Отражение.
- •Законы отражения. Принцип Гюйгенса. Формулы Френеля. Поляризация света.
- •1.5. Виды отражений.
- •1.6.Дисперсия света. Опыт Ньютона. Виды дисперсий.
- •Решение задач.
- •Тест к проекту № 1.
- •Угол падения луча через воздух на поверхность стекла равен 60 градусов, угол преломления равен 30 градусам. Выберите правильное утверждение.
- •2. На рисунке изображены плоское металлическое зеркало вс и лампочка а. Выберите правильное утверждение (рисунок).
- •Проект № 2
- •2.4.2 Поглощение ик-излучения веществом
- •2.4.3 Способы изображения ик спектров
- •2.4.4 Качественный и количественный анализ по ик спектрам
- •Приготовление образцов
- •2.4.6. Принципы устройства и действия ик-Фурье спектрометров.
- •Глаз пчелы.
- •Методика экспериментов.
- •Результаты экспериментов
- •Тест к проекту №2
- •Проект № 3.
- •3.1. Спектральный анализ. Виды спектров.
- •3.2. Открытие спектрального анализа.
- •3.3. Эмиссионный спектральный анализ.
- •3.4. Источники света.
- •3.5. Спектральные приборы.
- •3.6. Применение эмиссионного спектрального анализа.
- •Тест к проекту № 3.
- •Проект № 4. Абсорбционный анализ
- •Спектральные приборы
- •Лабораторная работа
- •Проект № 5.
- •Введение
- •2.1 Основные определения и понятия
- •2.2 Оптические свойства металлов
- •Приборы для исследования оптических характеристик металлов.
- •2.4.Экспериментальные методики
- •2.5.Техническое применение
- •Изучение оптических свойств пленок вольфрамата лантана, легированных самарием
- •Результаты экспериментов
- •Тест к проекту №5
- •Проект № 6.
- •6.1. Актуальность.
- •6.2. Цель работы
- •6.3. Магнитооптические эффекты.
- •Эффект Керра
- •6.4.Феррит гранат
- •6.5.Лабораторная работа №1. Изучение спектра пропускания и поглощения феррит – граната, при помощи ик – Фурье спектрометра.
- •6.6.Лабораторная работа №2. Определение абсорбции с помощью биохимического анализатора.
- •Тест к проекту № 6
- •Проект № 7
- •7.1.Цель работы:
- •7.2.Актуальность.
- •7.3. Определение молекулы.
- •7.4. Подходы к теоретическому анализу связи между строением сложных молекул и их спектральными свойствами.
- •7.5. Уравнение Шрёдингера.
- •7.5.1. Решение модельного квантового уравнения для ядерной подсистемы.
- •7.5.2. Решении задачи в ангармоническом приближении.
- •7.6. Лабораторная работа.
- •Тесты к проекту №7.
- •1. Молекула состоит из…
- •2. Решение прямой спектральной задачи, состоит в нахождении всех характеристик молекул непосредственно из решения уравнения…
- •3. Уравнение Шредингера -…
- •Общий тест к проектам.
- •Условные обозначения.
2.4.3 Способы изображения ик спектров
Спектральные данные записываются как зависимость коэффициента поглощения от длины волны, т.е. выражаются с помощью двух переменных величин – фактора интенсивности и фактора длины волны. Выбор наиболее подходящих выражений для этих двух факторов зависит от условий работы, области исследования, а также от дальнейшего применения полученных величин.
Фактор интенсивности может быть выражен следующим образом: I/I0 – пропускание, доля пропущенного излучения; I/I0100 – пропускание, %; [I0-I/I0]100 – поглощение, %; D=lgI0/I – оптическая плотность.
При указанных способах выражения фактор интенсивности, толщина слоя и концентрация могут быть измерены в любых единицах: толщина – в мм, см; концентрация – в весовых и объемных процентах, в г/л, мг/л, г/мл, мг/мл, моль/л и т.д.
В инфракрасной области спектра запись производится обычно в процентах пропускания или поглощения.
Спектр поглощения может быть охарактеризован следующими величинами:
1) длинами волн максимумов поглощения и интенсивностью в этих максимумах;
2) длинами волн в минимумах кривой поглощения и интенсивностью в этих точках;
3) длинами волн, отвечающих перегибам кривой поглощения, и интенсивностью для этих точек.
2.4.4 Качественный и количественный анализ по ик спектрам
Определение состава смесей органических и неорганических соединений (качественный анализ) и установление концентраций компонентов смеси (количественный анализ) являются одними из важных задач ИК–спектроскопии.
Для проведения как качественного, так и количественного анализа по ИК–спектрам необходимо иметь спектры чистых компонентов. При сравнении спектра со спектром вещества, присутствие которого предполагается, находят в спектре смеси все полосы поглощения эталонного вещества. Если спектр анализируемого образца содержит все полосы поглощения эталонного вещества, можно полагать, что вещество действительно содержится в образце.
В настоящее время имеются атласы и автоматизированные картотеки спектров, с помощью которых можно отождествить любое соединение, если оно было раньше известно и для него получен колебательный спектр.
В случае ИК-спектров, так же как и в случае ультрафиолетовых (УФ) и видимых спектров (ВИ) поглощения, соотношение между пропусканием света системой и концентрацией поглощающих веществ выражается законом Ламберта-Бугера-Бера:
D=lg1/T=lg I0/I=сd (2.6)
где D – оптическая плотность; I0 – интенсивность падающего света; I –интенсивность прошедшего света; с – молярная концентрация; l – толщина поглощающего слоя; - молярный коэффициент поглощения для данного волнового числа и температуры.
Если закон Бугера – Ламберта – Бера выполняется, что бывает далеко не всегда, то при фиксированной толщине слоя оптическая плотность линейно зависит от концентрации вещества, что и позволяет легко проводить количественный анализ. Отклонения от линейной зависимости бывают связаны или с межмолекулярными взаимодействиями компонентов смеси (раствор), включая специфические (ассоциация, водородная связь) и химические взаимодействия или с инструментальными причинами. Играют роль также эффекты отражения, рассеяния излучения и т.д. Поэтому всегда проводится проверка выполнения закона светопоглощения и чаще всего для проведения количественного анализа строятся градуировочные графики по эталонам.
Для снижения ошибок количественных измерений рекомендуется работать с пропусканием в пределах 20 … 60% (оптическая плотность в пределах 0,1 … 1,0) или, по крайней мере, не выходить за пределы 10 … 80% пропускания, когда ошибки резко возрастают. При большом поглощении необходимо уменьшать либо толщину слоя, либо концентрацию.