Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
хаос записка.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
197.04 Кб
Скачать
  1. Неправильные представления о теории хаоса

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса — это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок — и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы — наследственной непредсказуемости системы — а на унаследованном ей порядке — общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Рис. 2. Аттрактор Лоренца

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с вкладом отдельных атомов в число Авогадро (что является очень маленьким числом по сравнению со значениями порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы — в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

  1. Применение теории хаоса

В центре многих исследований физических систем, таких как, прогнозирование финансовых рынков и рынков ценных бумаг, системный анализ, сжатие изображения и жидкостная динамика, наука хаоса обещает продолжать производить поглощающую научную информацию, которая может сформировать лицо науки в будущем.

Всегда нужно знать о новых открытиях одну вещь - что в них хорошего. Так что хорошего в теории хаоса? Первое и самое главное, теория хаоса - это теория. И как таковая, в большей степени она используется как научная основа, чем как непосредственно прикладные знания. Теория хаоса имеет громадное значение в качестве точки зрения на события, которые происходят в мире, отличающейся от более традиционного строго детерминированного взгляда, который доминировал в науке со времен Ньютона.

Фактически любая хаотическая система может быть легко смоделирована - рынок акций обеспечивает тенденции, которые могут быть проанализированы с использованием "странного аттрактора" намного легче, чем с применением стандартных явных уравнений; капание водопроводного крана кажется случайным непривычному уху, но когда составляется график «странного аттрактора», обнаруживается жуткий порядок, неожиданный с обычной точки зрения. Рекурсивные методы сжатия изображений - все еще исследуются, но они обещают удивительные результаты, - графический коэффициент сжатия будет 600:1. Спецэффекты кинофильмов будут иметь более реалистичные облака, горы и тени с применением фрактальной графической технологии.

Рынки — это нелинейные динамические системы. Теория хаоса предоставляет математический аппарат для анализа такого рода нелинейных динамических систем. Применение на практике этого аппарата показывает, что рыночные цены носят случайный характер с небольшим трендовым компонентом. Размер трендового компонента зависит от рынка, на котором работает трейдер, и выбранного временного периода.

Еще одной характеристикой хаотичных рынков является «чувствительность к начальным условиям». Именно это делает динамичные рыночные системы трудными для прогноза. Поскольку не представляется никакой возможности с точностью предсказать рыночную ситуацию и поскольку множество неточностей и ошибок возникает в описании ситуации, накапливается с течением времени вследствие общей сложности системы – точное предсказание становиться невозможным.

Билл Вильямс утверждает, что аналитик, руководствуясь исключительно математическими методиками, не может достичь большого успеха на реальном финансовом рынке, потому что делает свои выводы в мире, скорее, бумажном, состоящем из цифр, вертикалей и прямых, чего в реальном мире просто не существует. Он видит положение вещей такими, какими ему их представляет бумага, а не такими, какие они есть на самом деле. Таким образом, согласно утверждениям Вильямса, нельзя работать на финансовом поле, беря в расчет исключительно финансовый или технический анализ, несмотря на всю их научность и логичность. Вильямс уверен, что эти методы не дают возможности стабильно иметь прибыль.

Как же по теории хаоса нужно работать на реальном денежном пространстве? Вильямс предлагает делать выводы, основываясь на понятии пяти измерений, которые в порядке очередности, начиная от первого, выглядят так: фрактал, движущая сила, момент ускорения или замедления, комбинация силы или зона, и в финале линия баланса. Данные параметры всегда дополняют друг друга и следуют друг за другом, поэтому правильный анализ требует обязательно учитывать каждый фактор из выше изложенных.

Если другие виды анализа будут ждать, когда наберется достаточно информации, чтобы делать какие-то выводы, теория хаоса предлагает сразу же, как только имеется тенденция к изменению фрактала, активизировать свою работу в этом направлении, покупая или продавая больше, чем другие и наращивать свое присутствие с появлением первых сигналов включения в рынок каждого из следующих после фрактала четырех измерений. Вильямс утверждает, что таким способом грамотный трейдер может заработать сумму в три раза большую, чем если бы он просто купил рыночную позицию по минимуму и ничего не делая, ничего не добавляя, продал ее по максимуму. Эта теория достаточно популярна на рынке Форекс.

Теория хаоса находит приложения в широком спектре наук. Одним из самых ранних стало ее применение к анализу турбулентности в жидкости. Движение жидкости бывает либо ламинарным (гладким и регулярным), либо турбулентным (сложным и нерегулярным). До появления теории хаоса существовали две конкурирующие теории турбулентности. Первая из них представляла турбулентность как накопление все новых и новых периодических движений; вторая объясняла неприменимость стандартной физической модели невозможностью описания жидкости как сплошной среды в молекулярных масштабах. В 1970 математики Д.Рюэль и Ф.Такенс предложили третью версию: турбулентность – это хаос в жидкости. Их предположение поначалу считалось весьма спорным, но с тех пор оно было подтверждено для нескольких случаев, в частности, для ранних стадий развития турбулентности в течении между двумя вращающимися цилиндрами. Развитая турбулентность по-прежнему остается загадочным явлением, но хаоса вряд ли удается избежать в любом возможном ее объяснении. Ранняя работа Э.Лоренца в области метеорологии получила дальнейшее развитие, и теперь известно, что полные уравнения поведения атмосферы, используемые при прогнозировании погоды, могут вести себя хаотически. Это означает, что долгосрочные прогнозы погоды на основе данных о ее прошлом состоянии подвержены «эффекту бабочки», так что погода обычно не может быть предсказана более чем на четыре или пять дней вперед – независимо от мощности используемых компьютеров.

Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами. Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном. Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером, т.е. период обращения каждого астероида составляет некую простую дробь с периодом обращения Юпитера. Например, в резонансе 2:3 период обращения астероида равен 2/3 периода обращения Юпитера. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки). В частности, астероиды в резонансе 1:3 с Юпитером имеют неустойчивые орбиты и могут испытать возмущения, заставляющие их пересечь орбиту Марса, после чего они могут испытать дальнейшие возмущения и пересечь орбиту Земли. В 1995 Ж.Ласкар установил, что на временных масштабах десятков миллионов лет вся Солнечная система хаотична. Однако хаос не делает все черты движения в Солнечной системе непредсказуемыми. Например, форма планетной орбиты может быть предсказуемой, однако точное положение планеты на орбите остается непредсказуемым. Ласкар предсказал вероятное будущее Солнечной системы в целом на следующие несколько миллиардов лет. Согласно его вычислениям, ничего существенного не случится с орбитами внешних планет – Юпитера, Сатурна, Урана, Нептуна и Плутона. Орбиты Земли и Венеры тоже не претерпели бы существенных изменений, если бы не Марс, орбита которого изменится настолько, что он едва не столкнется с Землей. Меркурий тоже приблизится к Венере и будет либо выброшен из Солнечной системы, либо поменяется местами с Венерой.

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. В частности, теория хаоса предлагает новые методы анализа данных и обнаружения скрытых закономерностей там, где прежде систему считали случайной и никаких закономерностей в ее поведении не искали, полагая, что их просто не существует. Одним из приложений этого подхода служит машина FRACMAT, обеспечивающая дешевую и быструю процедуру контроля качества пружинной проволоки.

К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера. Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива. Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.

Аттра́ктор — множество состояний (точнее — точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор — это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник — пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

С изменением параметров системы аттракторы тоже меняются. Однако при некоторых значениях параметров может произойти их качественная перестройка. Например, устойчивый фокус может смениться предельным циклом. Такие значения параметров называются бифуркационными, а сама перестройка - бифуркацией. Установление в динамической системе хаотического поведения в результате той или иной последовательности бифуркаций принято называть картиной или сценарием развития хаоса.

Аттракторы классифицируют по:

  1. Формализации понятия стремления: различают максимальный аттрактор, неблуждающее множество, аттрактор Милнора, центр Биркгофа, статистический и минимальный аттрактор.

  2. Регулярности самого аттрактора: аттракторы делят на регулярные (притягивающая неподвижная точка, притягивающая периодическая траектория, многообразие) и странные (нерегулярные — зачастую фрактальные и/или в каком-либо сечении устроенные как канторово множество; динамика на них обычно хаотична).

  3. Локальности («притягивающее множество») и глобальности (здесь же — термин «минимальный» в значении «неделимый»).

Большинство типов движения описывается простыми аттракторами, являющимися ограниченными циклами. Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров. Например, простая трехмерная система погоды описывается известным аттрактором Лоренца — одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных. Другим таким аттрактором является — отображение Рёслера, которая имеет двойной период, подобно логистическому отображению. Странные аттракторы появляются в обеих системах, и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например, отображение Эно). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру. Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.

Странный аттрактор - это некоторое “сложно устроенное” множество в фазовом пространстве, к которому притягиваются почти все траектории из его некоторой окрестности, а на самом множестве движение имеет экспоненциально неустойчивый характер. Такое сочетание глобального сжатия с локальной неустойчивостью приводит к тому, что аттрактор уже не может быть гладким как, например, тор; он определенным образом расслаивается и представляет собой в некотором сечении канторово множество.