- •1.Основы физиологии клетки
- •1.1. Общие сведения о клетке
- •1.2. Клеточная мембрана
- •1.3. Ядро клетки
- •1.4. Рибосомы
- •1 .5. Эндоплазматический ретикулум и аппарат Гольджи
- •1.6. Митохондрии и лизосомы
- •1.7. Цитоскелет
- •2. Структурные и функциональные принципы организации нервной системы
- •2.1. Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации
- •2.2. Общие принципы анатомической организации нервной системы
- •2.3. Спинной мозг
- •2.4. Ствол мозга
- •Функции черепномозговых нервов
- •2.5. Мозжечок
- •2.6. Промежуточный мозг
- •2.7. Конечный мозг (полушария)
- •2.8. Защита мозга, цереброспинальная жидкость или ликвор
- •2.9. Кровоснабжение мозга и гематоэнцефалический барьер
- •2.10. Принципы организации функциональных систем мозга
- •2.11. Элементарные операции мозга - основа психических процессов
- •3. Основы нейронной теории
- •3.1. Нейроны
- •3.2. Классификация нейронов
- •3.3. Электрические сигналы
- •3.4. Входные сигналы
- •3.5. Объединённый сигнал - потенциал действия
- •3.6. Проведение потенциала действия
- •3.7. Выходной сигнал
- •3.8. Глия
- •4. Мембранные механизмы возникновения и проведения электрических сигналов
- •4.1. Концентрационный и электрический градиенты
- •Распределение важнейших ионов при невозбуждённом состоянии мембраны гигантского аксона кальмара
- •Концентрация некоторых ионов в мышечных клетках теплокровных в ммоль/л
- •4.2. Активный транспорт
- •4.3. Пассивный транспорт – диффузия
- •4.4. Управляемые каналы
- •4.5. Блокаторы ионных каналов
- •4.6. Мембранный потенциал покоя
- •4.7. Потенциал действия
- •4.8. Механизм проведения потенциалов действия
- •5. Механизм передачи информации в синапсах
- •5.1. Две разновидности синапсов
- •5.2. Передача возбуждения в нервно-мышечном синапсе
- •5.3. Помехи в синаптической передаче
- •5.4. Передача возбуждения в центральных синапсах
- •5.5. Постсинаптическое и пресинаптическое торможение
- •5.6. Функциональное значение и разновидности торможения в цнс
- •5.7. Функциональное значение химических синапсов в переносе информации
- •5.8. Электрические синапсы
- •6. Нейромедиаторы
- •6.1. Происхождение и химическая природа нейромедиаторов
- •6.2. Синтез нейромедиаторов
- •6.3. Выделение медиаторов
- •6.4. Разные постсинаптические рецепторы: ионотропное и метаботропное управление
- •6.5. Удаление медиаторов из синаптической щели
- •6.6. Отдельные медиаторные системы
- •6.6.1. Ацетилхолин
- •6.6.2. Биогенные амины
- •6.6.3. Серотонин
- •6.6.4. Гистамин
- •6.6.5. Глутамат
- •6.6.6. Гамк и глицин
- •6.6.7. Нейропептиды
- •6.7. Опиатные пептиды
- •7. Рефлексы
- •7.1. Рефлекс - стереотипная приспособительная реакция
- •7.2. Классификации рефлексов
- •7.3. Рефлекторная дуга
- •7.4. Нервные центры
- •7.5. Рефлексы растяжения - простая модель стереотипной реакции
- •7.6. Сухожильные рефлексы
- •7.7. Рефлекторная регуляция напряжения мышц
- •7.8. Сгибательные и ритмические рефлексы спинного мозга
- •7.9. Координация рефлекторной деятельности
- •7.10. Вегетативные рефлексы
- •7.11. Безусловные и условные рефлексы
- •8. Эффекторы
- •8.1. Строение скелетных мышц
- •8.2. Механизм сокращения мышечных волокон
- •8.3. Двигательные единицы
- •8.4. Зависимость мышечного сокращения от частоты нервных импульсов
- •8.5. Режимы мышечных сокращений
- •8.6. Регуляция длины и напряжения мышц
- •8.7. Гладкие мышцы
- •8.8. Сердечная мышца - миокард
- •8.8. Сердечная мышца - миокард
- •8.9. Железы
- •9. Функциональная специализация коры больших полушарий мозга
- •9.1. Соматосенсорная кора
- •9.2. Первичная зрительная кора
- •9.3. Вторичная (экстрастриарная) зрительная кора
- •9.4. Слуховая кора
- •9.5. Теменно-височно-затылочная ассоциативная кора
- •9.6. Префронтальная ассоциативная кора
- •9.7. Лимбическая кора
- •9.8. Височная кора
- •9.9 Электроэнцефалограмма
- •10. Двигательная функция цнс
- •10.1. Иерархическая организация моторных систем
- •10.2. Двигательные программы спинного мозга и ствола
- •10.3. Нисходящие пути от двигательных центров ствола
- •10.4. Нисходящие пути моторной коры
- •10.5. Планирование будущих действий и вторичные моторные области
- •10.6. Функциональная организация первичной моторной коры
- •10.7. Функциональная организация мозжечка
- •10.8. Взаимодействие нейронов внутри мозжечка
- •10.9. Функциональная организация базальных ганглиев
- •10.10. Последствия повреждений базальных ганглиев
- •11. Вегетативная функция цнс
- •11.1. Вегетативная нервная система
- •11.2. Периферический отдел вегетативной нервной системы
- •11.3. Тонус вегетативных нервов
- •11.4. Афферентное звено вегетативных рефлексов
- •11.5. Характер симпатического и парасимпатического влияния на деятельность внутренних органов
- •11.6. Передача возбуждения в синапсах вегетативной нервной системы
- •11.7. Центры вегетативной регуляции спинного мозга и ствола
- •11. 8. Роль гипоталамуса в регуляции вегетативных функций
- •11.9. Вегетативные механизмы регуляции кровообращения
- •11.10. Основные звенья регуляции дыхания
- •12. Основы нейроэндокринной регуляции функций
- •12.1. Происхождение, секреция, транспорт и действие гормонов
- •12.2. Регуляция образования гормонов
- •12.3. Роль гипоталамуса в регуляции образования гормонов передней доли гипофиза (гипоталамо-аденогипофизарная система)
- •12.4. Физиологическая роль гормонов аденогипофиза
- •Гипофизотропные и гипофизарные гормоны
- •12.5. Гипоталамус и гормоны нейрогипофиза
- •12.6. Гормоны мозгового вещества надпочечников и симпатоадреналовая реакция
- •12.7. Гормоны коры надпочечников
- •12.8. Гормоны щитовидной железы
- •12.9. Гормоны поджелудочной железы
- •12.10. Половые гормоны
- •12.11. Стресс
- •13. Интегративные механизмы регуляции поведения, основанного на биологических мотивациях
- •13.1. Мотивации
- •13.2. Кибернетические принципы гомеостатического регулирования
- •13.3. Гипоталамус - важнейшая мотивационная структура мозга
- •13.4. Лимбическая система мозга
- •13.5. Роль мезолимбической системы в формировании мотиваций
- •13.6. Физиологические механизмы боли
- •13.7. Роль миндалин в образовании мотиваций
- •13.8. Гомеостатическое и поведенческое регулирование температуры тела
- •13.9. Механизмы регуляции пищевого поведения
- •13.9.1. Поступление и усвоение пищи
- •1 3.9.2. Открытие центров голода и насыщения в гипоталамусе
- •13.9.3. Новые данные о центрах голода и насыщения
- •13.10. Питьевое поведение
- •13.10.1. Обмен воды и солей в организме
- •13.10.2. Регуляция водно-солевого равновесия и питьевого поведения
- •13.11. Половое поведение
- •13.11.1. Критические периоды половой дифференцировки
- •13.11.2. Половые особенности когнитивной деятельности
- •13.11.3. Биологические основы сексуального поведения
- •Лауреаты нобелевской премии по физиологии и медицине, чьи работы связаны с исследованием нервной системы или механизмов поведения
11.5. Характер симпатического и парасимпатического влияния на деятельность внутренних органов
Большинство органов имеют двойную, т.е. симпатическую и парасимпатическую иннервацию. Тонус каждого из этих отделов вегетативной нервной системы может быть уравновешен влиянием другого отдела, но при определённых ситуациях обнаруживается повышенная активность, преобладание одного из них и тогда проявляется подлинный характер влияния этого отдела. Такое изолированное действие можно обнаружить и в экспериментах с перерезкой или фармакологической блокадой симпатических или парасимпатических нервов. После такого вмешательства деятельность рабочих органов изменяет ся под влиянием сохранившего с ним связь отдела вегетативной нервной системы. Другой способ экспериментального изучения состоит в поочерёдном раздражении симпатических и парасимпатических нервов специально подобранными параметрами электрического тока - этим моделируется повышение симпатического или парасимпатического тонуса.
Влияние двух отделов вегетативной нервной системы на управляемые органы чаще всего противоположно по направленности сдвигов, что даже даёт повод говорить об антагонистическом характере отношений симпатического и парасимпатического отделов. Так, например, при активации симпатических нервов, управляющих работой сердца, происходит увеличение частоты и силы его сокращений, растёт возбудимость клеток проводящей системы сердца, а при повышении тонуса блуждающих нервов регистрируются противоположные сдвиги: частота и сила сердечных сокращений уменьшаются, возбудимость элементов проводящей системы снижается. Другие примеры противоположного влияния симпатических и парасимпатических нервов можно видеть в таблице 11.1.
Несмотря на то, что влияние симпатического и парасимпатического отделов на многие органы оказывается противоположным, они действуют как синергисты, т.е. содружественно. При повышении тонуса одного из этих отделов синхронно снижается тонус другого: это означает, что физиологические сдвиги любой направленности обусловлены согласованными изменениями активности обоих отделов.
11.6. Передача возбуждения в синапсах вегетативной нервной системы
В вегетативных ганглиях и симпатического, и парасимпатического отделов медиатором является одно и то же вещество - ацетилхо-лин (рис. 11.3). Этот же медиатор служит химическим посредником для передачи возбуждения от парасимпатических постганглионарных нейронов к рабочим органам. Основным медиатором симпатических постганглионарных нейронов является норадреналин.
Хотя в вегетативных ганглиях и в передаче возбуждения от парасимпатических постганглионарных нейронов на рабочие органы используется один и тот же медиатор, взаимодействующие с ним хо-линорецепторы не одинаковы. В вегетативных ганглиях с медиатором взаимодействуют никотин-чувствительные или Н-холинорецеп-торы. Если в эксперименте смочить клетки вегетативных ганглиев 0,5% раствором никотина, то они перестают проводить возбуждение. К такому же результату приводит введение раствора никотина в кровь экспериментальных животных и создание, тем самым, высокой концентрации этого вещества. В малой же концентрации никотин действует подобно ацетилхолину, т.е. возбуждает этот тип холи-норецепторов. Такие рецепторы связаны с ионотропными каналами и при их возбуждении открываются натриевые каналы постсинапти-ческой мембраны.
Таблица 11.1
Характер симпатического и парасимпатического влияния на некоторые органы и системы (Прочерком обозначено отсутствие влияния)
Орган или система |
Активация |
|
Симпатического отдела |
Парасимпатического отдела |
|
Сердце |
Увеличение частоты и силы сокращений |
Уменьшение частоты и силы сокращений |
Бронхи |
Расширение |
Сужение |
Бронхиальные железы |
Уменьшение секреции |
Повышение |
Слюнные железы |
Выделение небольшого количества вязкой слюны |
секреции Обильное выделение водянистой слюны |
Пищеварительные железы |
Уменьшение секреции |
Увеличение секреции |
Мышцы желудка и кишечника |
Ослабление моторики |
Усиление моторики |
Сфинктеры |
Сокращение |
|
Поговые железы |
Секреция |
Расслабление |
Мышцы, поднимающие волосы |
Сокращение |
— |
Зрачок |
Расширение |
Сужение |
Слёзные железы |
— |
Сужение |
Мочевой пузырь |
Расслабление |
Секреция |
Внутренний сфинктер |
Сокращение |
Сокращение |
Расщепление углеводов и жиров |
Стимуляция |
Расслабление |
Мозговое вещество надпочечников |
Стимуляция секреции адреналина |
— |
Холинорецепторы, находящиеся в рабочих органах и взаимодействующие с ацетилхолином постганглионарных нейронов, принадлежат к другому типу: они не реагируют на никотин, зато их можно возбудить малым количеством другого алкалоида - мускарина или блокировать высокой концентрацией этого же вещества. Мускарин-чувствительныеили М-холинорецепторы обеспечивают метаботроп-ное управление, в котором участвуют вторичные посредники, а вызываемые действием медиатора реакции развиваются медленнее и сохраняются дольше, чем при ионотропном управлении.
М
едиатор
симпатических постганглионарных
нейронов норад-реналин может связываться
метаботропными адренорецепторами двух
типов: а или (3, соотношение которых в
разных органах не одинаково, что и
определяет различные физиологические
реакции на действие норадреналина.
Например, в гладких мышцах бронхов
преобладают (3-адренорецепторы:
действие медиатора на них сопровождается
расслаблением мышц, что ведёт к расширению
бронхов. В гладких мышцах артерий
внутренних органов и кожи больше
СХ-ад-ренорецепторов и здесь мышцы под
действием норадреналина сокращаются,
что ведёт к сужению этих сосудов. Секрецию
потовых желез контролируют особые,
холинэргические симпатические нейроны,
медиатором которых является ацетилхолин.
Есть сведения и о том, что артерии
скелетных мышц тоже иннервируют
симпатические холинэргические нейроны.
Согласно другой точке зрения артерии
скелетных мышц управляются адренэргическими
нейронами, причём норадреналин
действует на них через а-адренорецепторы.
А тот факт, что при мышечной работе,
всегда сопровождающейся повышением
симпатической активности, артерии
скелетных мышц расширяются, объясняют
действием гормона мозгового вещества
надпочечников адреналина на
(3-адренорецепторы
При симпатической активации адреналин в больших количествах выделяется из мозгового вещества надпочечников (следует обратить внимание на иннервацию мозгового вещества надпочечников симпатическими преганглионарными нейронами), и тоже взаимодействует с адренорецепторами. Это усиливает симпатическую реакцию, поскольку кровь приносит адреналин и к тем клеткам, вблизи которых нет окончаний симпатических нейронов. Норадреналин и адреналин стимулируют расщепление гликогена в печени и липидов в жировой ткани, действуя там на (3-адренорецепторы. В сердечной мышце |3-рецепторы намного чувствительнее к норадреналину, чем к адреналину, тогда как в сосудах и бронхах их легче активирует адреналин. Эти различия послужили основанием для разделения |3-рецепторов на два типа: (31 (в сердце) и [32 (в других органах).
Медиаторы вегетативной нервной системы могут действовать не только на постсинаптическую, но и на пресинаптическую мембрану, где тоже имеются соответствующие рецепторы. Пресинаптические рецепторы используются для регуляции количества выделяемого медиатора. Например, при повышенной концентрации норадреналина в синаптической щели он действует на пресинаптические ос-рецепторы, что приводит к уменьшению его дальнейшего выделения из пресинаптического окончания (отрицательная обратная связь). Если же концентрация медиатора в синаптической щели становится низкой, с ним взаимодействуют преимущественно |3-рецепторы преси-наптической мембраны, а это ведёт к повышению выделения норадреналина (положительная обратная связь).
По такому же принципу, т.е. с участием пресинаптических рецепторов, осуществляется регуляция выделения ацетилхолина. Если окончания симпатических и парасимпатических постганглионарных нейронов оказываются поблизости друг от друга, то возможно реципрок-ное влияние их медиаторов. Например, пресинаптические окончания холинэргических нейронов содержат ос-адренорецепторы и, если на них подействует норадреналин, то выделение ацетилхолина уменьшится. Таким же образом ацетилхолин может уменьшать выделение но-радреналина, если присоединится к М-холинорецепторам адренэрги-ческого нейрона. Таким образом, симпатический и парасимпатический отделы конкурируют даже на уровне постганглионарных нейронов.
Очень многие лекарственные препараты действуют на передачу возбуждения в вегетативных ганглиях (ганглиоблокаторы, ос-адреноб-локаторы, Р-блокаторы и т.д.) и поэтому широко применяются в медицинской практике для коррекции различного рода нарушений вегетативной регуляции.
