
- •1.Основы физиологии клетки
- •1.1. Общие сведения о клетке
- •1.2. Клеточная мембрана
- •1.3. Ядро клетки
- •1.4. Рибосомы
- •1 .5. Эндоплазматический ретикулум и аппарат Гольджи
- •1.6. Митохондрии и лизосомы
- •1.7. Цитоскелет
- •2. Структурные и функциональные принципы организации нервной системы
- •2.1. Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации
- •2.2. Общие принципы анатомической организации нервной системы
- •2.3. Спинной мозг
- •2.4. Ствол мозга
- •Функции черепномозговых нервов
- •2.5. Мозжечок
- •2.6. Промежуточный мозг
- •2.7. Конечный мозг (полушария)
- •2.8. Защита мозга, цереброспинальная жидкость или ликвор
- •2.9. Кровоснабжение мозга и гематоэнцефалический барьер
- •2.10. Принципы организации функциональных систем мозга
- •2.11. Элементарные операции мозга - основа психических процессов
- •3. Основы нейронной теории
- •3.1. Нейроны
- •3.2. Классификация нейронов
- •3.3. Электрические сигналы
- •3.4. Входные сигналы
- •3.5. Объединённый сигнал - потенциал действия
- •3.6. Проведение потенциала действия
- •3.7. Выходной сигнал
- •3.8. Глия
- •4. Мембранные механизмы возникновения и проведения электрических сигналов
- •4.1. Концентрационный и электрический градиенты
- •Распределение важнейших ионов при невозбуждённом состоянии мембраны гигантского аксона кальмара
- •Концентрация некоторых ионов в мышечных клетках теплокровных в ммоль/л
- •4.2. Активный транспорт
- •4.3. Пассивный транспорт – диффузия
- •4.4. Управляемые каналы
- •4.5. Блокаторы ионных каналов
- •4.6. Мембранный потенциал покоя
- •4.7. Потенциал действия
- •4.8. Механизм проведения потенциалов действия
- •5. Механизм передачи информации в синапсах
- •5.1. Две разновидности синапсов
- •5.2. Передача возбуждения в нервно-мышечном синапсе
- •5.3. Помехи в синаптической передаче
- •5.4. Передача возбуждения в центральных синапсах
- •5.5. Постсинаптическое и пресинаптическое торможение
- •5.6. Функциональное значение и разновидности торможения в цнс
- •5.7. Функциональное значение химических синапсов в переносе информации
- •5.8. Электрические синапсы
- •6. Нейромедиаторы
- •6.1. Происхождение и химическая природа нейромедиаторов
- •6.2. Синтез нейромедиаторов
- •6.3. Выделение медиаторов
- •6.4. Разные постсинаптические рецепторы: ионотропное и метаботропное управление
- •6.5. Удаление медиаторов из синаптической щели
- •6.6. Отдельные медиаторные системы
- •6.6.1. Ацетилхолин
- •6.6.2. Биогенные амины
- •6.6.3. Серотонин
- •6.6.4. Гистамин
- •6.6.5. Глутамат
- •6.6.6. Гамк и глицин
- •6.6.7. Нейропептиды
- •6.7. Опиатные пептиды
- •7. Рефлексы
- •7.1. Рефлекс - стереотипная приспособительная реакция
- •7.2. Классификации рефлексов
- •7.3. Рефлекторная дуга
- •7.4. Нервные центры
- •7.5. Рефлексы растяжения - простая модель стереотипной реакции
- •7.6. Сухожильные рефлексы
- •7.7. Рефлекторная регуляция напряжения мышц
- •7.8. Сгибательные и ритмические рефлексы спинного мозга
- •7.9. Координация рефлекторной деятельности
- •7.10. Вегетативные рефлексы
- •7.11. Безусловные и условные рефлексы
- •8. Эффекторы
- •8.1. Строение скелетных мышц
- •8.2. Механизм сокращения мышечных волокон
- •8.3. Двигательные единицы
- •8.4. Зависимость мышечного сокращения от частоты нервных импульсов
- •8.5. Режимы мышечных сокращений
- •8.6. Регуляция длины и напряжения мышц
- •8.7. Гладкие мышцы
- •8.8. Сердечная мышца - миокард
- •8.8. Сердечная мышца - миокард
- •8.9. Железы
- •9. Функциональная специализация коры больших полушарий мозга
- •9.1. Соматосенсорная кора
- •9.2. Первичная зрительная кора
- •9.3. Вторичная (экстрастриарная) зрительная кора
- •9.4. Слуховая кора
- •9.5. Теменно-височно-затылочная ассоциативная кора
- •9.6. Префронтальная ассоциативная кора
- •9.7. Лимбическая кора
- •9.8. Височная кора
- •9.9 Электроэнцефалограмма
- •10. Двигательная функция цнс
- •10.1. Иерархическая организация моторных систем
- •10.2. Двигательные программы спинного мозга и ствола
- •10.3. Нисходящие пути от двигательных центров ствола
- •10.4. Нисходящие пути моторной коры
- •10.5. Планирование будущих действий и вторичные моторные области
- •10.6. Функциональная организация первичной моторной коры
- •10.7. Функциональная организация мозжечка
- •10.8. Взаимодействие нейронов внутри мозжечка
- •10.9. Функциональная организация базальных ганглиев
- •10.10. Последствия повреждений базальных ганглиев
- •11. Вегетативная функция цнс
- •11.1. Вегетативная нервная система
- •11.2. Периферический отдел вегетативной нервной системы
- •11.3. Тонус вегетативных нервов
- •11.4. Афферентное звено вегетативных рефлексов
- •11.5. Характер симпатического и парасимпатического влияния на деятельность внутренних органов
- •11.6. Передача возбуждения в синапсах вегетативной нервной системы
- •11.7. Центры вегетативной регуляции спинного мозга и ствола
- •11. 8. Роль гипоталамуса в регуляции вегетативных функций
- •11.9. Вегетативные механизмы регуляции кровообращения
- •11.10. Основные звенья регуляции дыхания
- •12. Основы нейроэндокринной регуляции функций
- •12.1. Происхождение, секреция, транспорт и действие гормонов
- •12.2. Регуляция образования гормонов
- •12.3. Роль гипоталамуса в регуляции образования гормонов передней доли гипофиза (гипоталамо-аденогипофизарная система)
- •12.4. Физиологическая роль гормонов аденогипофиза
- •Гипофизотропные и гипофизарные гормоны
- •12.5. Гипоталамус и гормоны нейрогипофиза
- •12.6. Гормоны мозгового вещества надпочечников и симпатоадреналовая реакция
- •12.7. Гормоны коры надпочечников
- •12.8. Гормоны щитовидной железы
- •12.9. Гормоны поджелудочной железы
- •12.10. Половые гормоны
- •12.11. Стресс
- •13. Интегративные механизмы регуляции поведения, основанного на биологических мотивациях
- •13.1. Мотивации
- •13.2. Кибернетические принципы гомеостатического регулирования
- •13.3. Гипоталамус - важнейшая мотивационная структура мозга
- •13.4. Лимбическая система мозга
- •13.5. Роль мезолимбической системы в формировании мотиваций
- •13.6. Физиологические механизмы боли
- •13.7. Роль миндалин в образовании мотиваций
- •13.8. Гомеостатическое и поведенческое регулирование температуры тела
- •13.9. Механизмы регуляции пищевого поведения
- •13.9.1. Поступление и усвоение пищи
- •1 3.9.2. Открытие центров голода и насыщения в гипоталамусе
- •13.9.3. Новые данные о центрах голода и насыщения
- •13.10. Питьевое поведение
- •13.10.1. Обмен воды и солей в организме
- •13.10.2. Регуляция водно-солевого равновесия и питьевого поведения
- •13.11. Половое поведение
- •13.11.1. Критические периоды половой дифференцировки
- •13.11.2. Половые особенности когнитивной деятельности
- •13.11.3. Биологические основы сексуального поведения
- •Лауреаты нобелевской премии по физиологии и медицине, чьи работы связаны с исследованием нервной системы или механизмов поведения
8.9. Железы
Железы внешней секреции или экзокринные имеют трубчатые протоки для выведения образующегося в них секрета. Секрет может выводиться наружу, как у потовых или у сальных желёз, он может поступать в ротовую полость, как у слюнных желёз, в кишечник, как у печени и поджелудочной железы.
Секреторная активность желёз регулируется нервными, гуморальными и местными механизмами, причём значимость каждого из механизмов для деятельности разных желёз неодинакова. Нервный контроль за самой секрецией и выведением секрета осуществляет вегетативная нервная система, не находящаяся под произвольным контролем. Секреторная деятельность большинства пищеварительных желёз усиливается под влиянием парасимпатического отдела. Повышение тонуса парасимпатических нервов происходит рефлекторно: в естественных условиях это вызывается актом еды и поступлением пищи в желудочно-кишечный тракт.
Резюме
Скелетные мышцы контролируются исключительно мотонейронами, от которых они получают возбуждение. Возбуждение мышц приводит к выходу кальция из саркоплазматического ретикулума и присоединению его к регуляторному белку, что даёт возможность сократительным белкам взаимодействовать. Сокращение мышцы обеспечивается скольжением нитей миозина вдоль актиновых нитей. Контроль длины и напряжения мышц осуществляется с помощью двух типов проприоцепторов. Управление активностью у-мотонейронов позволяет регулировать мышечный тонус. Гладкие мышцы и сердечная мышца обладают свойством автоматии - они способны сами генерировать возбуждение. Их деятельность контролируется вегетативной нервной системой.
Вопросы для самоконтроля
115. Как называется цитоплазматическая мембрана мышечного волокна?
А. Саркоплазма; Б. Сарколемма; В. Саркоплазматический ре-тикулум; Г. Саркомер; Д. Миофибрилла.
116. Нити какого белка в миофибрилле прикреплены к Z-мем-бране?
А. Тропонина; Б. Тропомиозина; В. Актина; Г. Миозина; Д. Эластина.
117. Какие белки ' шствуют в образовании поперечных мостиков при сокращении мышечного волокна?
А. Тропонин-тропомиозин; Б. Тропонин-актин; В. Тропомио-зин-актин; Г. Миозин-актин; Д. Миозин-тропонин.
118. Как называется участок миофибриллы между соседними Z-мембранами?
А. Актиновый диск; Б. Миозиновый диск; В. Триада; Г. Саркоплазма; Д. Саркомер.
119. Какой из перечисленных ниже белков является сократительным?
А. Миозин; Б. Тропомиозин; В. Тропонин; Г. Саркомер; Д. Сарколемма.
120. Что из перечисленного ниже в мышечном сокращении выполняет роль регуляторного белка?
А. Актин; Б. Тропомиозин; В. Миозин; Г. Миофиламент; Д. Саркомер.
121. Как называется мотонейрон с иннервируемыми им мышечными волокнами?
А. Нервно-мышечный синапс; Б. Триада; В. Двигательная единица; Г. Миофибрилла; Д. Эффектор.
122. Какой процесс приводит к сокращению мышечного волокна?
A. Сокращение нитей актина; Б. Сокращение нитей миозина;
B. Совместное сокращение нитей миозина и актина; Г. Скольжение нитей актина и миозина относительно друг друга; Д. Для сокращения необходимы все указанные процессы.
123. Какое событие при мышечном сокращении должно произойти раньше остальных?
А. Присоединение ионов кальция к молекулам тропонина; Б. Повышение концентрации ионов кальция в межфибриллярном пространстве; В. Перемещение тропомиозина в глубину желобка между нитями актина; Г. Прикрепление мио-зиновых головок к актину; Д. Расщепление молекул АТФ под влиянием каталитических центров миозина.
124. Для какого процесса используется энергия А ТФ, освобождающаяся под влиянием миозина?
А. Выход ионов кальция из цистерн саркоплазматического рети-кулума; Б. Присоединение ионов кальция к тропонину; В. Перемещение молекулы тропомиозина в глубину желобка актиновой нити; Г. Разъединение поперечных мостиков; Д. Повышение концентрации ионов кальция в межфибриллярном пространстве.
125. Что происходит сразу после возбуждения поперечных Т-тру бочек мышечного волокна7
А. Выход ионов кальция из саркоплазматического ретикулу-ма; Б. Возврат кальция в цистерны саркоплазматического ре-тикулума; В. Присоединение кальция к тропонину с изменением его конформации; Г. Соединение кальция с тропонином без последующего изменения конформации; Д. Расщепление АТФ на актиновых нитях.
126. Что произойдёт, если на концевой пластинке, принадлежащей мышечному волокну, возникнет подпороговый пост-синаптический потенциал?
А. Одиночное сокращение; Б. Зубчатый тетанус; В. Гладкий тетанус; Г. Все ответы верны; Д. Все ответы не верны.
127. Что произойдёт, если сокращающееся мышечное волокно будет возбуждаться разрядами мотонейронов, следующими до начала фазы расслабления?
A. Суммация одиночных сокращений; Б. Зубчатый тетанус;
B. Гладкий тетанус; Г. Никаких изменений не произойдёт в связи с рефрактерностью волокна; Д. Все ответы не верны.
128. Какое из перечисленных ниже свойств имеется у гладких мышц и отсутствует у скелетных?
А. Возбудимость; Б. Проводимость; В. Сократимость; Г. Авто-матия; Д. Лабильность.
129. У какой из указанных мышц следует предполагать наибольшую длительность потенциала действия?
А. Скелетная мышца с высоким процентом быстрых двигательных единиц; Б. Скелетная мышца с преобладанием медленных двигательных единиц; В. Скелетная мышца промежуточного типа; Г. Гладкая мышца; Д. Сердечная мышца.