
- •1.Основы физиологии клетки
- •1.1. Общие сведения о клетке
- •1.2. Клеточная мембрана
- •1.3. Ядро клетки
- •1.4. Рибосомы
- •1 .5. Эндоплазматический ретикулум и аппарат Гольджи
- •1.6. Митохондрии и лизосомы
- •1.7. Цитоскелет
- •2. Структурные и функциональные принципы организации нервной системы
- •2.1. Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации
- •2.2. Общие принципы анатомической организации нервной системы
- •2.3. Спинной мозг
- •2.4. Ствол мозга
- •Функции черепномозговых нервов
- •2.5. Мозжечок
- •2.6. Промежуточный мозг
- •2.7. Конечный мозг (полушария)
- •2.8. Защита мозга, цереброспинальная жидкость или ликвор
- •2.9. Кровоснабжение мозга и гематоэнцефалический барьер
- •2.10. Принципы организации функциональных систем мозга
- •2.11. Элементарные операции мозга - основа психических процессов
- •3. Основы нейронной теории
- •3.1. Нейроны
- •3.2. Классификация нейронов
- •3.3. Электрические сигналы
- •3.4. Входные сигналы
- •3.5. Объединённый сигнал - потенциал действия
- •3.6. Проведение потенциала действия
- •3.7. Выходной сигнал
- •3.8. Глия
- •4. Мембранные механизмы возникновения и проведения электрических сигналов
- •4.1. Концентрационный и электрический градиенты
- •Распределение важнейших ионов при невозбуждённом состоянии мембраны гигантского аксона кальмара
- •Концентрация некоторых ионов в мышечных клетках теплокровных в ммоль/л
- •4.2. Активный транспорт
- •4.3. Пассивный транспорт – диффузия
- •4.4. Управляемые каналы
- •4.5. Блокаторы ионных каналов
- •4.6. Мембранный потенциал покоя
- •4.7. Потенциал действия
- •4.8. Механизм проведения потенциалов действия
- •5. Механизм передачи информации в синапсах
- •5.1. Две разновидности синапсов
- •5.2. Передача возбуждения в нервно-мышечном синапсе
- •5.3. Помехи в синаптической передаче
- •5.4. Передача возбуждения в центральных синапсах
- •5.5. Постсинаптическое и пресинаптическое торможение
- •5.6. Функциональное значение и разновидности торможения в цнс
- •5.7. Функциональное значение химических синапсов в переносе информации
- •5.8. Электрические синапсы
- •6. Нейромедиаторы
- •6.1. Происхождение и химическая природа нейромедиаторов
- •6.2. Синтез нейромедиаторов
- •6.3. Выделение медиаторов
- •6.4. Разные постсинаптические рецепторы: ионотропное и метаботропное управление
- •6.5. Удаление медиаторов из синаптической щели
- •6.6. Отдельные медиаторные системы
- •6.6.1. Ацетилхолин
- •6.6.2. Биогенные амины
- •6.6.3. Серотонин
- •6.6.4. Гистамин
- •6.6.5. Глутамат
- •6.6.6. Гамк и глицин
- •6.6.7. Нейропептиды
- •6.7. Опиатные пептиды
- •7. Рефлексы
- •7.1. Рефлекс - стереотипная приспособительная реакция
- •7.2. Классификации рефлексов
- •7.3. Рефлекторная дуга
- •7.4. Нервные центры
- •7.5. Рефлексы растяжения - простая модель стереотипной реакции
- •7.6. Сухожильные рефлексы
- •7.7. Рефлекторная регуляция напряжения мышц
- •7.8. Сгибательные и ритмические рефлексы спинного мозга
- •7.9. Координация рефлекторной деятельности
- •7.10. Вегетативные рефлексы
- •7.11. Безусловные и условные рефлексы
- •8. Эффекторы
- •8.1. Строение скелетных мышц
- •8.2. Механизм сокращения мышечных волокон
- •8.3. Двигательные единицы
- •8.4. Зависимость мышечного сокращения от частоты нервных импульсов
- •8.5. Режимы мышечных сокращений
- •8.6. Регуляция длины и напряжения мышц
- •8.7. Гладкие мышцы
- •8.8. Сердечная мышца - миокард
- •8.8. Сердечная мышца - миокард
- •8.9. Железы
- •9. Функциональная специализация коры больших полушарий мозга
- •9.1. Соматосенсорная кора
- •9.2. Первичная зрительная кора
- •9.3. Вторичная (экстрастриарная) зрительная кора
- •9.4. Слуховая кора
- •9.5. Теменно-височно-затылочная ассоциативная кора
- •9.6. Префронтальная ассоциативная кора
- •9.7. Лимбическая кора
- •9.8. Височная кора
- •9.9 Электроэнцефалограмма
- •10. Двигательная функция цнс
- •10.1. Иерархическая организация моторных систем
- •10.2. Двигательные программы спинного мозга и ствола
- •10.3. Нисходящие пути от двигательных центров ствола
- •10.4. Нисходящие пути моторной коры
- •10.5. Планирование будущих действий и вторичные моторные области
- •10.6. Функциональная организация первичной моторной коры
- •10.7. Функциональная организация мозжечка
- •10.8. Взаимодействие нейронов внутри мозжечка
- •10.9. Функциональная организация базальных ганглиев
- •10.10. Последствия повреждений базальных ганглиев
- •11. Вегетативная функция цнс
- •11.1. Вегетативная нервная система
- •11.2. Периферический отдел вегетативной нервной системы
- •11.3. Тонус вегетативных нервов
- •11.4. Афферентное звено вегетативных рефлексов
- •11.5. Характер симпатического и парасимпатического влияния на деятельность внутренних органов
- •11.6. Передача возбуждения в синапсах вегетативной нервной системы
- •11.7. Центры вегетативной регуляции спинного мозга и ствола
- •11. 8. Роль гипоталамуса в регуляции вегетативных функций
- •11.9. Вегетативные механизмы регуляции кровообращения
- •11.10. Основные звенья регуляции дыхания
- •12. Основы нейроэндокринной регуляции функций
- •12.1. Происхождение, секреция, транспорт и действие гормонов
- •12.2. Регуляция образования гормонов
- •12.3. Роль гипоталамуса в регуляции образования гормонов передней доли гипофиза (гипоталамо-аденогипофизарная система)
- •12.4. Физиологическая роль гормонов аденогипофиза
- •Гипофизотропные и гипофизарные гормоны
- •12.5. Гипоталамус и гормоны нейрогипофиза
- •12.6. Гормоны мозгового вещества надпочечников и симпатоадреналовая реакция
- •12.7. Гормоны коры надпочечников
- •12.8. Гормоны щитовидной железы
- •12.9. Гормоны поджелудочной железы
- •12.10. Половые гормоны
- •12.11. Стресс
- •13. Интегративные механизмы регуляции поведения, основанного на биологических мотивациях
- •13.1. Мотивации
- •13.2. Кибернетические принципы гомеостатического регулирования
- •13.3. Гипоталамус - важнейшая мотивационная структура мозга
- •13.4. Лимбическая система мозга
- •13.5. Роль мезолимбической системы в формировании мотиваций
- •13.6. Физиологические механизмы боли
- •13.7. Роль миндалин в образовании мотиваций
- •13.8. Гомеостатическое и поведенческое регулирование температуры тела
- •13.9. Механизмы регуляции пищевого поведения
- •13.9.1. Поступление и усвоение пищи
- •1 3.9.2. Открытие центров голода и насыщения в гипоталамусе
- •13.9.3. Новые данные о центрах голода и насыщения
- •13.10. Питьевое поведение
- •13.10.1. Обмен воды и солей в организме
- •13.10.2. Регуляция водно-солевого равновесия и питьевого поведения
- •13.11. Половое поведение
- •13.11.1. Критические периоды половой дифференцировки
- •13.11.2. Половые особенности когнитивной деятельности
- •13.11.3. Биологические основы сексуального поведения
- •Лауреаты нобелевской премии по физиологии и медицине, чьи работы связаны с исследованием нервной системы или механизмов поведения
5.3. Помехи в синаптической передаче
Нарушение любого из этапов синаптической передачи разлаживает деятельность синапса в целом. Так, например, при отравлении ботулиническим токсином может наступить мышечный паралич и даже смерть из-за прекращения деятельности дыхательных мышц. Этот токсин выделяют бактерии Clostridium botulinum, которые быстро размножаются в мясных и рыбных консервах, приготовленных с нарушениями технологии, что чаще всего бывает при домашнем консервировании. Ботулинический токсин даже в малой концентрации способен блокировать выделение ацетилхолина из пресинапти-ческих окончаний мотонейрона, а следствием этой блокады является мышечный паралич.
Давно известен яд кураре, которым южноамериканские индейцы обрабатывали наконечники своих стрел. Кураре представляет собой сгущённый растительный экстракт древесного сока, добываемого из коры лиан видов Strychnos и Chondodendron. Этот яд может присоединиться к Н-холинорецепторам в нервно-мышечном синапсе, становясь конкурентом ацетилхолину. Длительная блокада холино-рецепторов ядом приводит к остановке дыхания и смерти (надо принять во внимание, что деятельность дыхательных мышц регулируется мотонейронами, которые передают возбуждение через нервно-мышечные синапсы).
Связь яда кураре с холинорецепторами обратима: если ацетил-холин накапливается в синапсе в высокой концентрации, он начинает вытеснять кураре и ослаблять взаимодействие яда с рецепторами. Основное действующее вещество кураре - а-тубокурарин, который был выделен из растительной смеси ещё в! 935 году и в дальнейшем получил распространение в медицинской практике. Его вводят при проведении хирургических операций в качестве средства, расслабляющего мускулатуру; при этом пациент должен находиться на искусственно управляемом дыхании.
Другой яд - а-бунгаротоксин вступает с Н-холинорецепторами в необратимую связь. Он образуется в ядовитых железах бунгаров или крайтов - змей, родственных кобрам. В железах некоторых видов бунгаров содержится до пяти смертельных доз этого яда. С 1970 года очищенные и снабжённые радиоактивной меткой молекулы а-бунга-ротоксина стали применять в исследовательских целях. Меченые молекулы необратимо связываются с холинорецепторами, что позволяет, с помощью метки, определять количество таких рецепторов, их расположение и т.п. Таким способом было, например, доказано, что развитие миастении (прогрессирующей мышечной слабости) обусловлено уменьшением количества холинорецепторов, которые, как оказалось, при этой болезни повреждаются аутоантителами.
Не так уж редко встречаются, к сожалению, отравления фосфо-органическими веществами, такими, например, как тиофос, хлорофос, карбофос и т.п. При поступлении этих веществ в организм человека они расщепляются на ещё более токсичные метаболиты, которые обладают антихолинэстеразным действием, т.е. угнетают активность холинэстеразы. В результате прекращается нормальное расщепление ацетилхолина, что нарушает всю обычную деятельность синапса. Это приводит сначала к мышечным судорогам, а затем к параличам и остановке дыхания.