
- •Федеральное агентство по образованию рф
- •«Электромеханические системы»
- •1. Основы электропривода 4
- •2. Электромеханические свойства двигателя 16
- •2.9.2. Динамическое торможение (дт) 44
- •2.9.3. Торможение противовключением (тпв) 44
- •3. Специальные конструкции двигателей. 46
- •3.1. Специальные конструкции двигателей 46
- •4. Выбор двигателя 55
- •Электромеханические системы
- •Введение
- •1. Основы электропривода
- •1.1.Структурная схема автоматизированного электропривода.
- •1.2.Функциональная схема автоматизированного электропривода
- •1.3.Модель механической части электропривода
- •1.4.Понятие механической характеристики двигателя и механизма
- •1.5.Установившиеся и переходные режимы электропривода. Устойчивость электропривода.
- •1.6.Энергетика электромеханического преобразователя (двигателя)
- •1.7.Понятие номинальных режимов и ограничения электромеханических преобразований.
- •1.8.Приведение статических и динамических нагрузок к валу двигателя
- •2.Электромеханические свойства двигателя
- •2.1.Электромеханические свойства двигателя постоянного тока независимого возбуждения (дпт нв)
- •2.2.Э нергетика дпт нв.
- •2.3.Искусственные характеристики дпт нв
- •2.3.1.И скусственные характеристики путем изменения напряжения якоря
- •2.3.2.Искусственные характеристики при регулировании сопротивления якоря
- •2.3.3.Управление возбуждением
- •2.4.Способы управления напряжением якоря дпт нв. Источники питания.
- •4. Мостовая схема выпрямления.
- •5. Реверсивные преобразователи
- •2.5.Механические характеристики дпт пв.
- •2.6.Статические характеристики ад
- •2.7.Способы регулирования ад. Искусственные характеристики ад.
- •2.7.1.Частотный способ регулирования.
- •2.7.2.Фазовый способ регулирования
- •2.7.3.Р егулирование изменением сопротивления обмоток
- •2.7.4.Регулирование изменением числа пар полюсов
- •2.8.Реализация тормозных режимов дпт
- •2.8.1.Рекуперативное торможение (рт)
- •2.8.2.Д инамическое торможение (дт)
- •2.8.3.Торможение противовключением (тпв)
- •2.9.Тормозные режимы ад.
- •2.9.1.Рекуперативное торможение (рт)
- •2.9.2.Динамическое торможение (дт)
- •2.9.3.Торможение противовключением (тпв)
- •3.Специальные конструкции двигателей.
- •3.1. Специальные конструкции двигателей
- •3.2.Альтернативные структуры электроприводов
- •3.2.1.Вентильные двигатели
- •3.2.2.Шаговые двигатели
- •3.3.Методика выбора шд
- •4.Выбор двигателя
- •4.1.Математическая модель процессов нагревания и охлаждения
- •4.2.Классификация режимов электроприводов по виду теплового процесса
- •4.3.Выбор мощности двигателя
- •4.3.1.Метод средних потерь
- •4.3.2.Метод эквивалентного тока
- •4.3.3.Методы эквивалентного момента и мощности.
3.3.Методика выбора шд
К
инематическая
схема ШД.
Представляет собой корпус суппота.
Исходные данные:
i – передаточное число редуктора;
L – дискретность перемещения (цена шага, точность позиции) [м/имп];
tхв – шаг ходового винта [м/об];
vmax – максимальная скорость инструмента [м/мин];
Мс – момент сопротивления (включая трение холостого хода и сопротивление, вызываемое силами резания) [Нм];
Jпр – момент инерции.
Выбор ШД:
1. определение частоты приемистости
Если система регулирования
реализует линейное изменение частоты
(плавный разгон), то fп
выбирается по f0, то
есть
,
2. определение углового шага
На этом шаге может
наоборот выбираться
,
- передаточное число
3. определение момента двигателя М
,
где Мс – момент сопротивления на
ходовом винте
М
ст
– момент синхронизации
Рекомендуется
4. проверка двигателя по динамическим режимам
f0 – разгон на холостом ходу.
f1 – разгон под нагрузкой (рабочие подачи).
4.Выбор двигателя
4.1.Математическая модель процессов нагревания и охлаждения
Основным фактором, ограничивающим возможности двигателя в отношении преобразования энергии ("пропускную способность") являются теплопотери (тепловыделение) в токоведущих частях.
- нагрев I=Iном
при t≤tдоп
Потери энергии в двигателе вызывают нагрев его отдельных частей. Допустимый нагрев двигателя определяется нагревостойкостыо применяемых изоляционных материалов. Чем больше нагревостойкость, тем при той же мощности меньше размеры двигателя или при тех же размерах можно увеличить его мощность. Лучшему использованию двигателя способствует также более совершенная система его охлаждения.
Изоляционные материалы, применяемые в электрических машинах, делятся на следующие основные классы нагревостойкости.
Изоляция класса А. К этому классу относятся хлопчатобумажные ткани, пряжа, бумага, волокнистые материалы из целлюлозы и шелка, пропитанные или погруженные в жидкий диэлектрик. Допустимая предельная температура 105 °С. В настоящее время электрические двигатели с изоляцией класса А практически не изготовляют. Такую изоляцию имеют двигатели постоянного тока серии П мощностью до 2,2 кВт и асинхронные двигатели серий А, АО до 6-го габарита включительно, АК.
Изоляция класса Е. Этот класс включает синтетические эмали (для изоляции проводов) на основе полиэфирных эпоксидных и подобных им смол, синтетические органические пленки и т. п., синтетические материалы. Допустимая предельная температура нагрева 120 °С. Эта изоляция имеет небольшое применение в двигателях малой мощности. В основном двигатели изготовляют с изоляцией классов В и F.
Изоляция класса B. К этому классу относятся слюда, асбест, стеклянное волокно и другие неорганические материалы со связывающими материалами органического происхождения. Допустимая предельная температура нагрева 130°С. Эти материалы применяются в двигателях серий 2П с высотой оси вращения до 120 мм включительно; 4А с высотой оси вращения до 132 мм. Применялись в старых сериях П мощностью от 3,2 до 14 кВт и в компенсированных двигателях мощностью 100—400 кВт; АО свыше 6-го габарита; А2 и АК2 мощностью от 400 до 1250 кВт.
Изоляция класса F. Этот класс включает те же материалы, что и для класса В, но сочетающиеся с синтетическими связующими и пропитывающими составами, модифицированными кремнийорганическими соединениями. Допустимая предельная температура нагрева 155 °С. Такую изоляцию имеют двигатели серий: 4А с высотой оси вращения свыше 132 мм, 2П с высотой оси вращения свыше 225 мм; MTF, MTK.F; старых серий П мощностью свыше 14 кВт.
Изоляция класса Н. К этому классу относятся те же материалы, что и для класса В, но в сочетании с кремнийорганическими связующими и пропитывающими составами. Допустимая предельная температура 180°С. Эта изоляция применяется для двигателей с частыми пусками и реверсами, а также при высокой температуре окружающей среды, например, для двигателей, предназначенных для грузоподъемных машин, в том числе металлургических. Такую изоляцию имеют двигатели серий МТН, МТКН, Д.
Изоляция класса С. Этот класс включает слюду, керамические материалы, стекло, кварц, применяемые с неорганическими связующими составами или без связующих составов. Допустимая предельная температура более 180 °С. Нагревостойкость этих материалов не используется полностью в современном электромашиностроении, поэтому предельная температура нагрева для этого класса не установлена.
Условия нагрева отдельных частей машины различны. Большему нагреву подвергаются части обмоток, расположенные во внутренних областях машины. Так же неодинаково и выделение теплоты и различных режимах работы, и поэтому направление тепловых потоков внутри машины непостоянно. При холостом ходе теплота передается от более нагретой стали двигателя к его обмоткам, а в нагруженном состоянии обмотки более нагреты, чем сталь, и направление теплового потока обратное. Эти обстоятельства весьма усложняют тепловые расчеты, и поэтому без соответствующих упрощений сделать выбор мощности невозможно.
Исследование тепловых процессов в двигателях производится со следующими допущениями:
1) двигатель рассматривается как однородное тело, обладающее бесконечно большой теплопроводностью, с одинаковой температурой во всех точках выделения теплоты и точках, соприкасающихся с охлаждающей средой;
2) теплоотдача во внешнюю среду пропорциональна первой степени разности температур двигателя и окружающей среды;
3) температура охлаждающей среды постоянна;
4) теплоемкость двигателя, мощность тепловых потерь и теплоотдача не зависят от температуры двигателя.
Уравнение теплового баланса:
- количество теплоты, выделяемое
двигателем в единицу времени;
А – теплоотдача
двигателя, количество теплоты, отдаваемое
двигателем в окружающую среду в единицу
времени при перегреве на 1;
С – теплоемкость
двигателя;
Обозначим
и
,
тогда
=1%
tпроц4Тн
Для двигателя вполне достаточно tпроц(3–4)Тн
Охлаждение происходит медленнее Тнохл>>Тн