Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электромеханические системы Гайченя О.Д. М-416.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.69 Mб
Скачать

3.2.Альтернативные структуры электроприводов

3.2.1.Вентильные двигатели

В ентильные двигатели – электрические машины, функционально объединенные с управляемым полупроводниковым коммутатором. Они близки по конструктивным признакам и характеристикам к коллекторным двигателям. Вентильные двигатели имеют частоту вращения вала, не зависящую от частоты сети, регулирование частоты вращения осуществляется путем изменения потока возбуждения и тока в якоре. Вентильные двигатели обладают высоким пусковым моментом и хорошими энергетическими показателями. Благодаря отсутствию коллекторно-щеточного узла вентильные двигатели имеют большую надежность и долговечность.

В

Рис.1 Многофазный вентильный двигатель

ентильные двигатели, как и коллекторные, имеют широкое разнообразие конструкций и схем включения обмоток.

На рис. 1 представлена схема вентильного двигателя, который имеет такую же обмотку якоря, как и машина постоянного тока. На роторе вентильного двигателя 1 расположена обмотка возбуждения или постоянные магниты. В пазах статора располагается многофазная обмотка якоря 2, секции или группа секций которой присоединены через полупроводниковые блоки 3 к распределительным шинам 4 и сети.

В положении, показанном на рис. 1, открыты тиристоры 1' и 5". Ток якоря Iя в обмотке статора проходит по двум параллельным ветвям и создается вращающий момент. При движении ротора происходит переключение тиристоров датчиками положения ротора.

При повороте ротора по часовой стрелке на угол 360/m, где m — число отпаек (фаз) обмотки якоря (в рассматриваемой машине m = 8) происходит переключение тиристоров. Включаются тиристоры 2' и 6", а 1' и 5" — отключаются и т.д.

Таким образом, при вращении ротора вращается и поле якоря. При этом происходит электромеханическое преобразование энергии.

При реверсе работают пары тиристоров: 1" и 5', 2" и 6' и т.д. Включение и отключение тиристоров осуществляется путем подачи импульсов напряжения со специальных датчиков, реагирующих на положение ротора.

+ U - Коммутатор по схеме рис. 1 по­лучается громоздким и вентильные дви­гатели по этой схеме практически не применяются. Чтобы упростить комму­татор, надо уменьшить число фаз машины.

Простейшей схемой вентильного двигателя является двухфазная схема, но наибольшее применение нашла трех­фазная схема (рис. 2). В этой схеме вентильная коммутация осуществляется трехфазным инвертором.

Система вентильной коммутации обычно состоит из датчика синхронизи­рующих сигналов, системы формирова­ния сигналов управления и управляемо­го коммутатора.

Д

Рис.2 Схема трехфазного вентильного двигателя

атчик синхронизирующих сигналов задает порядок и частоту пере­ключения элементов коммутатора. При позиционном управлении — это датчик положения ротора, а при фазовом — датчик фазы напряжения якорной обмотки. Датчик положения ротора представляет собой встроен­ный в машину узел, состоящий из чувствительных элементов, закреплен­ных на статоре, и сигнальных элементов, закрепленных на роторе. Обыч­но используются фотоэлектрические или магнитомодуляционные датчики.

Система формирования сигналов управления обеспечивает усиление и формирование синхронизирующих сигналов.

Управляемый коммутатор осуществляет бесконтактные переключе­ния в силовых цепях вентильного двигателя. Управляемый коммутатор выполняется на полупроводниковых приборах или других переключаю­щих элементах, например герконах.

В управляемых коммутаторах на полупроводниковых приборах ис­пользуются полностью управляемые приборы (транзисторы, двухоперационные тиристоры) и не полностью управляемые (тиристоры, семисторы).

По способу коммутации управляемые коммутаторы на не полностью управляемых полупроводниковых приборах можно разделить на три ви­да: с естественной, принудительной и смешанной коммутацией. При ес­тественной коммутации переключения происходят под действием ЭДС якорной обмотки. При принудительной коммутации управление тирис­торами осуществляется под действием коммутирующего напряжения от­дельного источника либо напряжения питающей сети. При смешанной коммутации имеет место комбинация первого и второго способов.

Вентильные двигатели могут питаться от сети как постоянного, так и переменного тока. Если управляемый коммутатор питается от сети посто­янного тока, то он представляет собой инвертор — преобразователь по­стоянного тока в переменный. Если управляемый коммутатор подключен к сети переменного тока, то он выполняет функции преобразователя частоты.

Электромеханическая часть вентильных двигателей постоянного то­ка, как правило, аналогична известным конструктивным модификациям синхронных машин. Для маломощных приводов используются двигатели с постоянными магнитами, а также гистерезисные, реактивные и индук­торные двигатели. В приводах средней и большой мощности используют­ся двигатели с электромагнитным возбуждением.

Характерной особенностью вентильных двигателей, отличающей их от двигателей постоянного тока, является наличие дополнительного кана­ла управления по углу синхронизации инвертора. Этот канал использует­ся для обеспечения необходимой жесткости механической характеристи­ки и достижения большей перегрузочной способности.

Вентильные двигатели применяются и в приводах небольшой мощ­ности, где нежелательно применение механического коммутатора (проиг­рыватели, приборы магнитной записи и др.).

В ентильные двигатели большой мощности нашли применение там, где ранее использовались нерегулируемые асинхронные или синхронные двигатели. Выполнены вентильные двигатели мощностью 1600 кВт с ре­гулированием частоты вращения для привода компрессоров холодильных машин и насосов циркуляционных систем.

Ротором выступает постоянный магнит.

Обозначение диодов VD1…VD6.

ДП – датчик положения.

Коммутатор всегда включает VT1…VT6 так, чтобы магнитный поток статора был перпендикулярен магнитному потоку ротора, подобно тому, как это делается в ДПТ с помощью механического коммутатора.

При включенных VT2, VT3, VT4 диаграмма потоков такая:

П ри Uип=0 двигатель не будет развивать момента, по мере увеличения напряжения будут увеличиваться и токи.

Механические характеристики такого двигателя такие же, как и у ДПТ.

01>02>03>04

Uип1>Uип2>Uип3>Uип4