
- •1.Назначение релейной защиты. Этапы развития релейной защиты
- •2. Повреждения и ненормальные режимы в электроэнергетической системе
- •3.Разновидности реле защиты и релейных защит
- •4.Способы включения реле и способы их воздействия на выключатель
- •5.Основные требования, предъявляемые к релейной защите
- •6. Разновидности и назначение автоматики
- •7. Трансформаторы тока. Назначение и принцип действия трансформаторов тока.
- •8 Схемы соединения тт и обмоток реле в схемах рз. Векторные диаграммы токов при различных видах повреждений.
- •9 Методика выбора тт для питания схем рза, 10% кратность.
- •10 Трансформаторы напряжения. Назначение и принцип действия трансформаторов напряжения.
- •11 Схемы включения тн и схемы соединения обмоток тн.
- •12 Источники оперативного тока
- •13 Постоянный оперативный ток
- •14. Блоки питания выпрямленным оперативным током.
- •15. Схемы вторичных соединений
- •16. Ручное и дистанциооное управление
- •17. Устройства центральной сигнализации
- •18. Микропроцессорные устройства
- •19. Особенности эксплуатации микропр. Защит
- •20. Основы выполненния токовых защит
- •22 Схемы мтз с независимыми выдержками времени
- •24 Назначение и принцип действия токовой отсечки.
- •25 Расширение защищаемой зоны токовой отсечки со ступенчатой характеристикой выдержки времени. Выбор параметров срабатывания
- •26 Схемы токовых отсечек
- •27 Принцип действия максимальной токовой направленной защиты линий. Включение реле мощности.
- •28 Схемы мтнз на постоянном оперативном токе, выбор параметров срабатывания. Выбор уставок максимальных токовых направленных защит.
- •29 Защита кольцевых сетей. Каскадное действие защит. Токовые защиты на двух параллельных линиях.
- •30 Токи и напряжения при замыкании на землю.
- •31 Выбор тока срабатывания ненаправленной защ зз. Выбор параметров срабатывания направленной защ зз.
- •33 Логическая защита шин (лзш).
- •34 Повреждения и ненормальные режимы работы трансформаторов и автотрансформаторов. Общие требования к выполнению защит трансформаторов.
- •35. Защита трансформаторов плавкими предохранителями.
- •36. Дифференциальная защита. Область применения и принцип действия. Особенности, влияющие на выполнение дзт
- •37. Выбор уставок диф. Защиты трансформатора
- •38. Диф. Отсечка трансформатора
- •39. Диф. Защита трансформатора с быстронасыщающимися трансформаторами (бнт). Диф. Защита с торможением
- •40. Газовая защита трансформатора. Принцип действия, назначение, область применения. Газовая защита переключателя рпн
- •41. Мтз двухообмоточных понижающих трансформаторов. Выбор уставок мтз тр-ра. Мтз с пуском по напряжению
- •42. Расчет мтз на элементах схемы двухобмоточной подстанции
- •43. Расстановка защит на трехобмоточных трансформаторах
- •44. Токовая отсечка трансформатора
- •45. Защита от перегрузки трансформатора
- •46.Токовая защита нулевой последовательности трансформатора от однофазных кз на стороне 0,4 кВ.
- •47.Апв трансформаторов. Автоматическая разгрузка трансформаторов. Автоматическое регулирование напряжения трансформаторов. Автоматика охлаждения трансформаторов.
- •48.Общие сведения о релейной защите электродвигателей. Виды повреждений и ненормальных режимов работы двигателей переменного тока.
- •49.Защита двигателей от междуфазных кз. Защита от перегрузки с тепловым реле. Защита от перегрузки с токовым реле.
- •50.Защита двигателей от замыканий на землю. Защита двигателей от минимального напряжения.
- •51. Защита электродвигателей напряжением до 1000в.
- •52.Защиты, применяемые на синхронных двигателях.
- •53.Назначение и виды повреждений конденсаторных установок. Схемы соединений ку и принцип действия защит ку.
- •55. Автоматическое повторное включение
- •56. Электрические апв однократного действия
- •57. Выбор уставок однократных апв для линий с односторонним питанием.
- •58. Автоматический ввод резерва
- •59. Расчет уставок автоматического ввода резерва
- •60. Автоматическая частотная разгрузка(ачр)
- •61. Предотвращение ложных отключений потребителей от ачр при кратковременных понижениях частоты в энергосистеме.
- •62. Защита предохранителями
- •63. Защита предохранителями воздушных линий 0,4 кВ. Трансформаторов
- •64.Защита автоматическими выключателями сетей до 1000 в
4.Способы включения реле и способы их воздействия на выключатель
Обмотки реле могут включаться на ток или напряжение сети непосредственно (первичные реле) или через измерительные трансформаторы тока и напряжения (вторичные реле). Наибольшее распространение получили вторичные реле, т.к. имеют ряд преимуществ: изолированы от высокого напряжения и выполняются стандартными на одни и те же номинальные токи 5А или 1А и номинальное напряжение 100В; располагаются на некотором расстоянии от защищаемого объекта в удобном для обслуживания месте. Достоинство первичных реле: для их включения не требуется измерительных трансформаторов и контрольного кабеля. Такие реле используют для защиты маломощных объектов (трансформаторов, электродвигателей, ЛЭП) на напряжение до 10кВ.
Существует два способа воздействия защиты на отключение выключателя: прямой и косвенный. В реле прямого действия исполнительный элемент воздействует непосредственно на расцепляющий рычаг выключателя. Такие реле устанавливаются непосредственно в приводе выключателя, поэтому их часто называют встроенными. В защите с реле косвенного действия исполнительный элемент замыкает контакты цепи обмотки электромагнита, называемого катушкой отключения выключателя. Питание этой катушки осуществляется от специального источника – источник оперативного тока. Электромагнит освобождает защелку, после чего выключатель отключается под действием пружины. Защиты с реле косвенного действия требуют дополнительный источник оперативного тока, однако усилия, развиваемые таким реле, могут быть незначительными, поэтому они отличаются большей точностью и малым потреблением. Кроме того, в защитах имеющих в своем составе несколько реле, проще реализовать взаимодействие между ними при помощи оперативного тока, а не механическим путем. Таким образом, наибольшее распространение получили защиты со вторичными реле косвенного действия.
5.Основные требования, предъявляемые к релейной защите
К РЗ предъявляются такие основные требования, как селектив-ность, быстродействие, чувствительность, надежность.
Селективность, или избирательность– это способность РЗ выявлять место повреждения и отключать его только ближайшими выключателями. При КЗ в точке К1 (рис. 1.2) для правильной ликвидации аварии должна подействовать защита на выключателе Q1 и отключить этот выключатель. При этом остальная неповрежденная часть электриче-ской установки останется в работе. Такое избирательное действие за-щиты называется селективным. Если же при КЗ в точке К1 раньше защиты выключателя Q1 подействует защита выключателя Q2 и отключит этот выключатель,
то ликвидация аварии будет неправильной, т. к. кроме поврежденно-го электродвигателяM1, останется без напряжения неповрежденный электродвигатель М2. Такое действие защиты называется неселек-тивным. Из рис. 1.2 видно, что если при КЗ в точке К1 подействует не-правильно защита выключателя Q3 и отключит этот выключатель, то последствия такого неселективного действия будут еще более тяже-лыми, т. к. без напряжения останутся оба неповрежденных электро-двигателя М2 и М3. В технике РЗ принято называть предыдущая(нижестоящая) и последующая(вышестоящая) защиты на смежных линиях. Так, на рис. 1.2 у выключателя Q1 установлена предыдущая защита, а у вы-ключателя Q2 – последующая. Нумерацию защит начинают от самой удаленной от источника питания G защиты.
Рассмотренный пример показывает, что выполнение требования селективности является важным для обеспечения правильной ликви-дации аварий. Применяется несколько способов обеспечения селективности.
Селективность по принципу действия. По принципу действия защиты могут иметь абсолютную или относительную селективность. В случае абсолютной селективности защита срабатывает только при КЗ в защищаемой зоне(например, газовая или дифференциальная за-щиты трансформатора). Защита, имеющая абсолютную селективность, принципиально не должна срабатывать при КЗ вне зоны дейст-вия(например, зона действия дифференциальной защиты ограничивается местом установки питающих ее ТТ). При относительной селективности защита срабатывает при КЗ в своей основной зоне, но может и применяться в качестве резервной при КЗ на смежных участках(например, максимальная токовая защита).
Селективность по чувствительности. Ток, напряжение или сопротивление срабатывания выбирается таким образом, чтобы последующая защита не действовала при КЗ на смежной линии или за трансформатором. Для этого(например, токовая отсечка(ТО)) от-страивается от токов КЗ в конце линии или за трансформатором и, следовательно, обладает селективностью по чувствительности.
Селективность по времени. Выдержка времени каждой после-дующей защиты(например, максимальной токовой) выбирается на ступень селективности больше предыдущей защиты. Поэтому последующая защита не успевает сработать, т. к. ее опережает предыдущая защита линии при КЗ на ней. Этот принцип наиболее прост, однако имеет существенный недостаток, заключающийся в том, что выдержка времени растет по мере приближения точки КЗ к источнику питания. Величина ступени селективности определяется точностью реле времени защиты, быстродействием примененного выключателя и для электромеханических защит составляет0,5 с, а для микропроцессорных защит– 0,2–0,3 с.
Логическая селективность применяется в том случае, если смежные защиты объединены линией связи. При этом последующая защита сработает без выдержки времени(быстродействующая ступень) при условии, что не запустилась предыдущая защита. Пуск предыдущей защиты свидетельствует о том, что КЗ произошло на смеж-ной линии и последующая защита переводится в режим временной селективности, т. е. она сработает, если откажет предыдущая защита или ее выключатель. Логическую селективность целесообразно применять на коротких линиях и при использовании цифровых реле, у которых есть специальный вход «логического ожидания». Быстродействие– это свойство РЗ отключать повреждение с минимально возможной выдержкой времени, т. к. быстрое отключение поврежденного оборудования или участка электрической установки предотвращает или уменьшает размеры повреждений, сохраняет нормальную работу потребителей неповрежденной части установки, предотвращает нарушение параллельной работы генераторов. Длительное
протекание тока КЗ может привести к повреждению неповрежденных участков оборудования, линий, трансформаторов, по которым протекает ток КЗ вследствие термического перегрева оборудования. Допустимое время протекания тока через оборудование, не вызывающее его повреждения, указывается в ГОСТах на оборудование и находится в обратно-пропорциональной зависимости от величины тока. Для обеспечения устойчивости параллельной работы генераторы, трансформаторы, линии электропередачи, по которым осуществляется параллельная работа, и все другие части электрической установки или электрической сети должны оснащаться быстродействующей РЗ, время действия которой не должно превышать0,1 с, а для линий сверхвысокого напряжения– не более0,02 с.
Чувствительность– это свойство защиты надежно срабатывать при КЗ в конце защищаемого участка в минимальном режиме работы системы. Защита должна обладать такой чувствительностью к тем видам повреждений и нарушений нормального режима работы, на которые она рассчитана. Чувствительность защиты должна также обеспечивать ее действие при повреждениях на смежных участках. Так, если при повреждении в точке К1 (рис. 1.2) по какой-либо причине не отключится выключатель Q1, то должна подействовать защита следующего к источнику питания выключателя Q2 и отключить этот выключатель. Такое действие защиты называется дальним резервированием смежного участка. Чувствительность защиты оценивается коэффициентом чувствительности, определяемым как отношение минимального значения контролируемого тока при КЗ в конце защищаемого участка к току
срабатывания защиты. Коэффициенты чувствительности нормируются[1] и минимальная их величина составляет при КЗ в защищаемой
зоне1,5, в зоне резервирования– 1,2, для быстродействующих дифференциальных защит 2
Коэффициент чувствительности учитывает погрешности реле, погрешности расчета параметров срабатывания РЗ, влияние переходного сопротивления и электрической дуги в месте КЗ.
Надежность– это свойство защиты гарантированно выполнять свои функции на протяжении всего периода эксплуатации. Защита должна правильно и безотказно действовать на отключение выключателей при всех повреждениях и нарушениях нормального режима работы и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима работы, при которых действие данной защиты не предусмотрено. Требование надежности обеспечивается совершенством принципов защиты и конструкций аппаратуры, добротностью деталей, простотой выполнения, а также уровнем эксплуатации. Требуемое состояние устройств защиты поддерживается плановыми проверками РЗ, при которых необходимо выявить и устранить возникшие дефекты. У современных микропроцессорных устройств защиты существуют встроенные системы автоматической и тестовой проверки, которые позволяют быстро выявить появившиеся неисправности и тем самым предотвратить отказ или неправильную работу защиты. Глубина таких проверок может быть большой, но не 100 %. Поэтому наличие тестовых проверок или автоматического контроля не исключает необходимости плановых проверок, но существенно уменьшают их частоту и объем проведения.
Для повышения надежности защиты применяют принципы ближнего или дальнего резервирования. Ближнее резервирование обеспечивается установкой на данном присоединении второй, резервной защиты, а для резервирования отказа выключателя– специального устройства резервирования отказа выключателя(УРОВ). При дальнем резервировании отказ защиты и выключателя резервируется защитой на вышестоящем, т. е. последующем элементе. При отсутствии такого резервирования последствия отказа не резервируемых защит очень тяжелы: это выгорание секций шин и трансформаторов на питающих подстанциях, выгорание отходящей линии на большом протяжении. Поэтому следует стремиться к применению средств ближнего и дальнего резервирования и отказываться от него только при полной технической невозможности осуществления.