- •1.Назначение релейной защиты. Этапы развития релейной защиты
- •2. Повреждения и ненормальные режимы в электроэнергетической системе
- •3.Разновидности реле защиты и релейных защит
- •4.Способы включения реле и способы их воздействия на выключатель
- •5.Основные требования, предъявляемые к релейной защите
- •6. Разновидности и назначение автоматики
- •7. Трансформаторы тока. Назначение и принцип действия трансформаторов тока.
- •8 Схемы соединения тт и обмоток реле в схемах рз. Векторные диаграммы токов при различных видах повреждений.
- •9 Методика выбора тт для питания схем рза, 10% кратность.
- •10 Трансформаторы напряжения. Назначение и принцип действия трансформаторов напряжения.
- •11 Схемы включения тн и схемы соединения обмоток тн.
- •12 Источники оперативного тока
- •13 Постоянный оперативный ток
- •14. Блоки питания выпрямленным оперативным током.
- •15. Схемы вторичных соединений
- •16. Ручное и дистанциооное управление
- •17. Устройства центральной сигнализации
- •18. Микропроцессорные устройства
- •19. Особенности эксплуатации микропр. Защит
- •20. Основы выполненния токовых защит
- •22 Схемы мтз с независимыми выдержками времени
- •24 Назначение и принцип действия токовой отсечки.
- •25 Расширение защищаемой зоны токовой отсечки со ступенчатой характеристикой выдержки времени. Выбор параметров срабатывания
- •26 Схемы токовых отсечек
- •27 Принцип действия максимальной токовой направленной защиты линий. Включение реле мощности.
- •28 Схемы мтнз на постоянном оперативном токе, выбор параметров срабатывания. Выбор уставок максимальных токовых направленных защит.
- •29 Защита кольцевых сетей. Каскадное действие защит. Токовые защиты на двух параллельных линиях.
- •30 Токи и напряжения при замыкании на землю.
- •31 Выбор тока срабатывания ненаправленной защ зз. Выбор параметров срабатывания направленной защ зз.
- •33 Логическая защита шин (лзш).
- •34 Повреждения и ненормальные режимы работы трансформаторов и автотрансформаторов. Общие требования к выполнению защит трансформаторов.
- •35. Защита трансформаторов плавкими предохранителями.
- •36. Дифференциальная защита. Область применения и принцип действия. Особенности, влияющие на выполнение дзт
- •37. Выбор уставок диф. Защиты трансформатора
- •38. Диф. Отсечка трансформатора
- •39. Диф. Защита трансформатора с быстронасыщающимися трансформаторами (бнт). Диф. Защита с торможением
- •40. Газовая защита трансформатора. Принцип действия, назначение, область применения. Газовая защита переключателя рпн
- •41. Мтз двухообмоточных понижающих трансформаторов. Выбор уставок мтз тр-ра. Мтз с пуском по напряжению
- •42. Расчет мтз на элементах схемы двухобмоточной подстанции
- •43. Расстановка защит на трехобмоточных трансформаторах
- •44. Токовая отсечка трансформатора
- •45. Защита от перегрузки трансформатора
- •46.Токовая защита нулевой последовательности трансформатора от однофазных кз на стороне 0,4 кВ.
- •47.Апв трансформаторов. Автоматическая разгрузка трансформаторов. Автоматическое регулирование напряжения трансформаторов. Автоматика охлаждения трансформаторов.
- •48.Общие сведения о релейной защите электродвигателей. Виды повреждений и ненормальных режимов работы двигателей переменного тока.
- •49.Защита двигателей от междуфазных кз. Защита от перегрузки с тепловым реле. Защита от перегрузки с токовым реле.
- •50.Защита двигателей от замыканий на землю. Защита двигателей от минимального напряжения.
- •51. Защита электродвигателей напряжением до 1000в.
- •52.Защиты, применяемые на синхронных двигателях.
- •53.Назначение и виды повреждений конденсаторных установок. Схемы соединений ку и принцип действия защит ку.
- •55. Автоматическое повторное включение
- •56. Электрические апв однократного действия
- •57. Выбор уставок однократных апв для линий с односторонним питанием.
- •58. Автоматический ввод резерва
- •59. Расчет уставок автоматического ввода резерва
- •60. Автоматическая частотная разгрузка(ачр)
- •61. Предотвращение ложных отключений потребителей от ачр при кратковременных понижениях частоты в энергосистеме.
- •62. Защита предохранителями
- •63. Защита предохранителями воздушных линий 0,4 кВ. Трансформаторов
- •64.Защита автоматическими выключателями сетей до 1000 в
59. Расчет уставок автоматического ввода резерва
Реле однократного включения. Выдержка времени промежуточного реле однократного включения tо.в от момента снятия напряжения с его обмотки до размыкания контакта должна с некоторым запасом превышать время включения выключателя резервного источника питания:
где tвкл – время включения выключателя резервного источника питания; если выключателей два, то выключателя, имеющего большее время включения; tзап – время запаса, принимаемое равным 0,3–0,5 с.
Пусковой орган минимального напряжения. Напряжение срабатывания реле минимального напряжения при выполнении пускового органа выбирается так, чтобы пусковой орган срабатывал только при полном исчезновении напряжения и не приходил в действие при понижениях напряжения, вызванных КЗ или самозапуском электродвигателей.
Для выполнения этого условия напряжение срабатывания реле минимального напряжения (напряжение, при котором возвращается якорь реле) должно быть равным:
где Uост.н – наименьшее расчетное значение остаточного напряжения при КЗ; Uзап – наименьшее напряжение при самозапуске электродвигателей; Кн – коэффициент надежности, принимаемый 1,25; КU – коэффициент трансформации трансформатора напряжения.
В большинстве случаев обоим условиям удовлетворяет напряжение срабатывания, равное:
где Uном – номинальное напряжение электроустановки.
Выдержка времени пускового органа минимального напряжения должна быть на ступень селективности больше выдержек времени защит, в зоне действия которых остаточное напряжение при КЗ оказывается ниже напряжения срабатывания реле минимального напряжения или реле времени. Такой зоной являются участки до реакторов и до трансформаторов
Таким образом, выдержка времени пускового органа минимального напряжения должна быть равна:
где
t1 – наибольшая выдержка времени защиты
присоединений, отходящих от шин ВН
подстанции; t2 – наибольшая выдержка
времени защиты присоединений, отходящих
от шин НН подстанции;
t
– ступень селективности, равная 0,4–0,5
с.
Чем меньше выдержка времени пускового органа АВР, тем меньше перерыв питания потребителей. Поэтому при выборе уставок пускового органа следует стремиться к тому, чтобы выдержка времени была по возможности меньше.
Пусковой орган минимального тока и напряжения. Напряжение срабатывания реле минимального напряжения пускового органа минимального тока и напряжения выбирается, как рассмотрено выше, по формулам (12.8) и (12.9). При этом отстраиваться следует только от КЗ в точке 3 (рис. 12.18), т. к. при КЗ в точках 4 и 5 через трансформатор проходит большой ток КЗ и реле КА держит контакт разомкнутым.
Ток срабатывания реле минимального тока должен быть меньше минимального тока нагрузки и определяется по формуле:
где Iнагр min – минимальный ток нагрузки трансформатора; Kн – коэффициент надежности, принимаемый равным 1,5; KI – коэффициент трансформации ТТ.
Выдержка времени определяется только по формуле (12.14) из условия согласования с защитой, действующей при КЗ в точке 6 (рис. 12.18). Согласования с защитами присоединений шин НН не требуется.
Реле контроля наличия напряжения на резервном источнике питания. Напряжение срабатывания этого реле определяется из условия отстройки от минимального рабочего напряжении по формуле:
где Uраб min – минимальное рабочее напряжение; Kн – коэффициент надежности, принимаемый равным 1,2; Kв – коэффициент возврата реле.
