
- •1.Назначение релейной защиты. Этапы развития релейной защиты
- •2. Повреждения и ненормальные режимы в электроэнергетической системе
- •3.Разновидности реле защиты и релейных защит
- •4.Способы включения реле и способы их воздействия на выключатель
- •5.Основные требования, предъявляемые к релейной защите
- •6. Разновидности и назначение автоматики
- •7. Трансформаторы тока. Назначение и принцип действия трансформаторов тока.
- •8 Схемы соединения тт и обмоток реле в схемах рз. Векторные диаграммы токов при различных видах повреждений.
- •9 Методика выбора тт для питания схем рза, 10% кратность.
- •10 Трансформаторы напряжения. Назначение и принцип действия трансформаторов напряжения.
- •11 Схемы включения тн и схемы соединения обмоток тн.
- •12 Источники оперативного тока
- •13 Постоянный оперативный ток
- •14. Блоки питания выпрямленным оперативным током.
- •15. Схемы вторичных соединений
- •16. Ручное и дистанциооное управление
- •17. Устройства центральной сигнализации
- •18. Микропроцессорные устройства
- •19. Особенности эксплуатации микропр. Защит
- •20. Основы выполненния токовых защит
- •22 Схемы мтз с независимыми выдержками времени
- •24 Назначение и принцип действия токовой отсечки.
- •25 Расширение защищаемой зоны токовой отсечки со ступенчатой характеристикой выдержки времени. Выбор параметров срабатывания
- •26 Схемы токовых отсечек
- •27 Принцип действия максимальной токовой направленной защиты линий. Включение реле мощности.
- •28 Схемы мтнз на постоянном оперативном токе, выбор параметров срабатывания. Выбор уставок максимальных токовых направленных защит.
- •29 Защита кольцевых сетей. Каскадное действие защит. Токовые защиты на двух параллельных линиях.
- •30 Токи и напряжения при замыкании на землю.
- •31 Выбор тока срабатывания ненаправленной защ зз. Выбор параметров срабатывания направленной защ зз.
- •33 Логическая защита шин (лзш).
- •34 Повреждения и ненормальные режимы работы трансформаторов и автотрансформаторов. Общие требования к выполнению защит трансформаторов.
- •35. Защита трансформаторов плавкими предохранителями.
- •36. Дифференциальная защита. Область применения и принцип действия. Особенности, влияющие на выполнение дзт
- •37. Выбор уставок диф. Защиты трансформатора
- •38. Диф. Отсечка трансформатора
- •39. Диф. Защита трансформатора с быстронасыщающимися трансформаторами (бнт). Диф. Защита с торможением
- •40. Газовая защита трансформатора. Принцип действия, назначение, область применения. Газовая защита переключателя рпн
- •41. Мтз двухообмоточных понижающих трансформаторов. Выбор уставок мтз тр-ра. Мтз с пуском по напряжению
- •42. Расчет мтз на элементах схемы двухобмоточной подстанции
- •43. Расстановка защит на трехобмоточных трансформаторах
- •44. Токовая отсечка трансформатора
- •45. Защита от перегрузки трансформатора
- •46.Токовая защита нулевой последовательности трансформатора от однофазных кз на стороне 0,4 кВ.
- •47.Апв трансформаторов. Автоматическая разгрузка трансформаторов. Автоматическое регулирование напряжения трансформаторов. Автоматика охлаждения трансформаторов.
- •48.Общие сведения о релейной защите электродвигателей. Виды повреждений и ненормальных режимов работы двигателей переменного тока.
- •49.Защита двигателей от междуфазных кз. Защита от перегрузки с тепловым реле. Защита от перегрузки с токовым реле.
- •50.Защита двигателей от замыканий на землю. Защита двигателей от минимального напряжения.
- •51. Защита электродвигателей напряжением до 1000в.
- •52.Защиты, применяемые на синхронных двигателях.
- •53.Назначение и виды повреждений конденсаторных установок. Схемы соединений ку и принцип действия защит ку.
- •55. Автоматическое повторное включение
- •56. Электрические апв однократного действия
- •57. Выбор уставок однократных апв для линий с односторонним питанием.
- •58. Автоматический ввод резерва
- •59. Расчет уставок автоматического ввода резерва
- •60. Автоматическая частотная разгрузка(ачр)
- •61. Предотвращение ложных отключений потребителей от ачр при кратковременных понижениях частоты в энергосистеме.
- •62. Защита предохранителями
- •63. Защита предохранителями воздушных линий 0,4 кВ. Трансформаторов
- •64.Защита автоматическими выключателями сетей до 1000 в
30 Токи и напряжения при замыкании на землю.
Сети
напряжением 6…35 кВ работают с изолированной
или компенсированной через дугогасящий
реактор нейтралью. Поэтому значения
емкостных токов однофазного замыкания
на землю невелики, они не превышают
20…30 А. Как правило, при однофазном
замыкании не требуется немедленного
отключения поврежденного присоединения,
а необходимо принять меры по переводу
нагрузки на резервный источник, а затем
отключить поврежденную линию. Необходимо
помнить, что в случае дугового замыкания
на одном из присоединений во всей
электрически связанной сети возникают
опасные перенапряжения (до
),
воздействующие на изоляцию электроустановок.
Эта – одна из главных причин выхода из
строя высоковольтных двигателей,
подключенных к сети 6 или 10 кВ.
В соответствии с ПУЭ для селективного обнаружения однофазных замыканий на каждом присоединении должна быть установлена защита от замыканий на землю (защита нулевой последовательности), которая в одних случаях действует на сигнал, в других – на отключение. В частности, на тех электродвигателях, у которых емкостной ток замыкания на землю превышает 5 А (первичных), защита должна действовать на отключение без замедления. Вместе с тем, практика показала, что и при меньших токах ЗЗ желательно двигатель отключать, поскольку длительное воздействие токов однофазного замыкания на землю на изоляцию двигателя приводит к переходу однофазного замыкания к двухфазному КЗ.
Емкостные сопротивления элементов электрической системы значительно превышают их индуктивные и активные сопротивления, что позволяет при определении тока замыкания на землю пренебречь ими и, следовательно, считать, что величина этого тока практически не зависит от места замыкания в сети.
Кроме того, ток замыкания на землю относительно мал и поэтому можно считать, что напряжение источника всегда остается неизменным.
Наибольшая
величина тока замыкания на землю
будет при металлическом замыкании,
т. е. при
.
.
Т. е. ток в 3 раза превышает емкостной ток на землю одной фазы в нормальных условиях.
Таким
образом, при замыкании на землю: Напряжение
поврежденной фазы снижается до нуля;
Напряжения неповрежденных фаз возрастает
в
раз;
Треугольник линейных напряжений не искажается, т. е. этот вид повреждений на работе потребителей не отражается.
Для пояснения принципа действия защиты от замыкания на землю на рис. 10.1 показано распределение емкостных токов в поврежденном и неповрежденных элементах сети.
При замыкании на землю одной из фаз, например, на линии W3 по "здоровым" фазам неповрежденных линий W1, W2 будут протекать емкостные токи, значение которых зависит от величины емкости данных линий относительно земли, а, следовательно, от параметров линии (длина и сечение). В поврежденной линии W3 эти токи складываются и проходят через точку замыкания на землю.
Основные требования к защитам от замыкания на землю
Так как замыкания на землю не вызывают появления сверхтоков и не искажают величину междуфазных напряжений, то не требуется немедленной ликвидации замыкания за землю. Однако вследствие повышения напряжения на неповрежденных фазах возможен пробой изоляции и потому ПУЭ рекомендуют оставлять замыкание на землю в течение не более 2 часов.
Защиты от замыканий на землю должны быть селективными и иметь высокую чувствительность, т. к. токи замыкания равны от нескольких ампер до 20-30 А.
Принципы выполнения защит от замыкания на землю
–
величина
тока нулевой последовательности (
)
в неповрежденной линии меньше, чем в
поврежденной;
– направление вектора тока в поврежденной и неповрежденной линиях противоположное.
Неселективная сигнализация о замыкании на землю
Неселективная сигнализация о замыкании на землю является простейшей защитой о появлении замыкания на землю без указания поврежденного участка.
Рис.10.3. Ненаправленная токовая защита: а – с использованием фильтра токов нулевой последовательности, б – с использованием кабельного ТТНП
При появлении замыкания на землю реле напряжения выдают сигнал, а затем дежурный поочередным отключением присоединений определяет поврежденный элемент. Указанный способ связан с кратковременным нарушением питания потребителей и требует много времени.
В связи с этим неселективную защиту необходимо дополнять селективной защитой от замыканий на землю.
Ненаправленная токовая защита реагирует на полный ток нулевой последовательности и предназначена для радиальных сетей.
Для выделения емкостного тока из общего тока нагрузки линии применяют фильтр тока нулевой последовательности (рис. 10.3, а)
Существенным осложнением является то, что ток замыкания на землю имеет очень малую величину
Для защиты от замыканий на землю используют специальные трансформаторы тока нулевой последовательности типа ТЗЛ, ТЗР, которые можно применить только при наличии кабельного вывода из ячейки (рис. 10.3, б). Для ячеек КРУ с воздушным выводом линий Самарский трансформаторный завод выпускает ТТ нулевой последовательности для воздушных выводов 6-10 кВ типа ТДЗЛВ-10. Трансформатор, имеющий внутренний диаметр окна 590 мм, устанавливается внутри ячейки и охватывает проходные изоляторы всех трех фаз.
Для кабельных ЛЭП изготовляются ТНП типа ТЗ с неразъемным магнитопроводом, надеваемым на кабель до монтажа воронки, а также типа ТЗР и ТФ с разъемным магнитопроводом, которые можно устанавливать на кабелях, находящихся в эксплуатации без снятия кабельной воронки. Конструкция кабельного ТНП показана на рис. 10.3, б.