Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
статистика!!!!.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
796.75 Кб
Скачать

Важнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие:

  1. В каждом конкретном случае необходимо исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные.

  2. Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.

Виды средних величин

Средние величины делятся на два больших класса: степенные средние и структурные средние

Степенные средние:

  • Арифметическая

  • Гармоническая

  • Геометрическая

  • Квадратическая

Структурные средние:

  • Мода

  • Медиана

Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.

Исходной базой расчета и ориентиром правильности выбора формы средней величины являются экономические соотношения, выражающие смысл средних величин и взаимосвязь между показателями.

Расчет некоторых средних величин:

  • Средняя заработная плата 1 работника = Фонд заработной платы / Число работников

  • Средняя цена 1 продукции = Стоимость производства / Количество единиц продукции

  • Средняя себестоимость 1 изделия = Стоимость производства / Количество единиц продукции

  • Средняя урожайность = Валовый сбор / посевная площадь

  • Средняя производительность труда = объем продукции, работ, услуг / Отработанное время

  • Средняя трудоемкость = отработанное время / объем продукции, работ, услуг

  • Средняя фондоемкость = Средняя стоимость основных фондов / объем продукции, работ и услуг

  • Средняя фондоотдача = объем продукции, работ и услуг / средняя стоимость основных фондов

  • Средняя фондовооруженность = средняя величина основных производственных фондов / среднесписочная численность производственного персонала

  • Средний процент брака = ( стоимость бракованной продукции / Стоимость всей произведенной продукции ) * 100%

  1. Структурные средние величины

Кроме степенных средних в статистике для относительной характеристики величины варьирующего признака и внутреннего строения рядов распределения пользуются структурными средними, которые представлены ,в основном, модой и медианой.

Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:

где:

  •  — значение моды

  •  — нижняя граница модального интервала

  •  — величина интервала

  •  — частота модального интервала

  •  — частота интервала, предшествующего модальному

  •  — частота интервала, следующего за модальным

Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот   , а затем определяют, какое значение варианта приходится на нее. (Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:

Ме = (n(число признаков в совокупности) + 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:

где:

  •  — искомая медиана

  •  — нижняя граница интервала, который содержит медиану

  •  — величина интервала

  •  — сумма частот или число членов ряда

  •  - сумма накопленных частот интервалов, предшествующих медианному

  •  — частота медианного интервала

  1. Абсолютные и относительные показатели вариации

Вариация – различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.

К показателям вариации относятся:

I группа — абсолютные показатели вариации

размах вариации

среднее линейное отклонение

дисперсия

среднее квадратическое отклонение

II группа — относительные показатели вариации

коэффициент вариации

коэффициент  осцилляции

относительное линейное отклонение

Самым элементарным показателем вариации признака является размах вариации R. Размах вариации показывает лишь крайние  (min, max) отклонения признака от общей средней.

Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику.

Среднее линейное отклонение — средняя арифметическая абсолютных значений отклонений (модуль отклонений) отдельных вариантов от их средней арифметической:

для несгруппированных данных (простое)

для сгруппированных данных (взвешенное)

Дисперсия  признака — средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий:

Простая дисперсия для несгруппированных данных

Взвешенная дисперсия для вариационного ряда

Cвойства дисперсии:

если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А- дисперсия не изменится; 

если все значения признака уменьшить или увеличить в одно и то же число раз (k раз), то дисперсия уменьшится или увеличится в k2  раз.

Используя второе свойство дисперсии, можно получить формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов:

где  i – величина интервала, X1 — новые (преобразованные) значения вариантов (А – условное начало, в качестве которого удобно использовать середину интервала или величину признака, обладающего наибольшей частотой.                   

                                                                    

Момент второго порядка

Квадрат момента первого порядка

Среднее квадратическое отклонение равно корню квадратному из дисперсии:

для несгруппированных данных (простое)

для вариационного ряда по сгруппированным данным (взвешенное)

Среднее квадратическое отклонение показывает, на сколько в среднем отклоняются отдельные варианты от ихсреднего значения.

 Среднее значение альтернативного признака и его дисперсия:

Среднее значение альтернативного признака

Дисперсия альтернативного признака

Подставив в формулу дисперсии q = 1 – p, получим:

Таким образом,  дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком и доли единиц, не обладающих данным признаком.

Среднее квадратическое отклонение альтернативного признака:

Показатели относительного рассеивания

Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах.  Они позволяют сравнивать характер рассеивания в различных распределениях  (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних,  при сравнении  разноименных  совокупностей). Расчет  показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к  средней  арифметической, умноженное на 100%.

1. Коэффициент  осцилляции  отражает  относительную  колеблемость крайних значений признака вокруг общей средней.

2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений (модуль отклонений) от средней величины.

3. Коэффициент вариации - отношение среднего квадратического отклонения к средней арифметической, применяется для сравнения вариаций различных признаков, используется как характеристика однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

  1. Понятие рядов динамики

Ряды динамики — это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.

Ряды динамики содержат два вида показателей. Показатели времени (годы, кварталы, месяцы и др.) или моменты времени (на начало года, на начало каждого месяца и т.п.). Показатели уровней ряда. Показатели уровней рядов динамики могут быть выражены абсолютными величинами (производство продукта в тоннах или рублях), относительными величинами (удельный вес городского населения в %) и средними величинами (средняя заработная плата работников отрасли по годам и т. п.). В табличной форме ряд динамики содержит два столбца или две строки.

Правильное построение рядов динамики предполагает выполнение ряда требований:

  1. все показатели ряда динамики должны быть научно обоснованными, достоверными;

  2. показатели ряда динамики должны быть сопоставимы по времени, т.е. должны быть исчислены за одинаковые периоды времени или на одинаковые даты;

  3. показатели ряда динамики должны быть сопоставимы по территории;

  4. показатели ряда динамики должны быть сопоставимы по содержанию, т.е. исчислены по единой методологии, одинаковым способом;

  5. показатели ряда динамики должны быть сопоставимы по кругу учитываемых хозяйств. Все показатели ряда динамики должны быть приведены в одних и тех же единицах измерения.

Статистические показатели могут характеризовать либо результаты изучаемого процесса за период времени, либо состояние изучаемого явления на определенный момент времени, т.е. показатели могут быть интервальными ( периодическими ) и моментными. Соответственно первоначально ряды динамики могут быть либо интервальными, либо моментными. Моментные ряды динамики в свою очередь могут быть с равными и неравными промежутками времени.

Первоначальные ряды динамики могут быть преобразованы в ряд средних величин и ряд относительных величин (цепной и базисный). Такие ряды динамики называют производными рядами динамики.

Методика расчета среднего уровня в рядах динамики различна, обусловлена видом ряда динамики. На примерах рассмотрим виды рядов динамики и формулы для расчета среднего уровня.