
- •1. Системность как всеобщее свойство организации мира.
- •6. Управление с системных позиций. Виды управляющих воздействий. Управление по принципу ведущего звена. Организационная структура системы (виды и роль).
- •7. Системы информационной поддержки управления (роль и принципы организации).
- •8. Объяснение поведения систем: обратные связи и контурное (итерационное) мышление.
- •9. Причинно-следственные связи. Усиливающие и уравновешивающие связи. Упреждающие связи.
- •12. Целеполагание: область определения цели, иерархия целей, место процедуры целеполагания в системном анализе.
- •13. Агрегирование: связь с эмерджентностью, техника, место процедуры агрегирования в системном анализе.
- •14. Измерения: измерительные шкалы, экономические измерения, место процедуры измерения в системном анализе.
- •15. Выбор: проблематика, варианты процедуры выбора в системном анализе, моделирование выбора.
- •16. Декомпозиция: техника, алгоритмизация и место процедуры декомпозиции в системном анализе.
- •17. Роль и проблемы моделирования в системном анализе.
- •18. Классификация моделей систем.
- •19. Вербальная модель системы: особенности формирования и ее место в системном анализе.
- •20. Статические модели. Динамические модели. Назначение. Примеры.
- •21. Детерминированные и стохастические модели. Роль в системных исследованиях, решении задач экспертного и конструктивного типа.
- •22. Модели системы «is to is» и «is to be». Назначение. Примеры. Роль в системном анализе.
- •23. Математические модели. Виды. Примеры. Проблемы математического моделирования социально-экономических систем.
- •24. Модель черного ящика: функциональное назначение, виды, синтаксис.
- •25. Модель состава: функциональное назначение и правила построения (статический и динамический варианты).
- •27. Sadt- модели: назначение и синтаксис.
- •28. Модель Idef0. Назначение. Синтаксис. Примеры.
- •29. Кибернетическая модель управления: варианты классической модели и сферы их применения.
- •30. Модель состава организационных блоков экономической системы: операционное ядро, стратегический апекс, административный персонал, технократический персонал, вспомогательный персонал.
- •31. Модель целесообразной и управляемой деятельности. Цикл p-d-c/s-a
- •32. Модель. Проблемы построения моделей социально-экономических систем. Отличия от моделей технических систем.
- •34. Системные диаграммы: язык, техника построения, их место в системном анализе.
- •35. Структурная модель динамики Дж.Форрестера. Переменная типа «запас». Переменная типа «поток». Управления. Запаздывания. Искажения.
- •36. Модель поведения человека в среде.
- •37. Взаимовлияние системы и личности. Понятия системного архетипа и системного паттерна. Понятие личностного архетипа и личностного паттерна.
- •38. Основные архетипы и паттерны в жизни современного общества. Концепция общественной безопасности.
- •39. Базовая методика системного анализа: этапность, степень алгоритмизации, особенности применения.
- •40. Этика системного анализа. Требования к системному аналитику. Особенности внедрения результатов системного исследования.
16. Декомпозиция: техника, алгоритмизация и место процедуры декомпозиции в системном анализе.
Декомпозиция ( детализация, разбиение на составляющие элементы)как способ системного анализа используется для структуризации целей, проблем, противоречий, стратегий, решений и ряда других задач функционально-структурного подхода к анализу существующих систем или синтезу новых систем.
Внешней формой декомпозиции могут граф-схемы, т.н. «деревья» целей, проблем, противоречий, стратегий, решений.
«Деревья» в целеполагании
Анализ процессов формулирования глобальной цели в сложной системе показывает, что эта цель возникает в сознании руководителя или коллектива как некоторая, достаточно «размытая» область. На любом уровне цель возникает вначале в виде «образа» цели. При этом достичь одинакового понимания общей цели всеми исполнителями, по-видимому, принципиально невозможно без ее легализации в виде упорядоченного или неупорядоченного набора взаимосвязанных подцелей, которые делают ее понятной и более конкретной для разных исполнителей. Таким образом, задача формулирования общей цели в сложных системах должна быть сведена к задаче структуризации цели. Для облегчения задачи целеполагания применяется декомпозиция (детализация) цели в виде неупорядоченного или упорядоченного набора взаимосвязанных подцелей (структуризация); которые делают ее более конкретной и понятной для всех участников процесса целеобразовапия. Для наименования подцелей в конкретных приложениях используют разные названия: направления, программы, задачи, а начиная с некоторого уровня - функции.
17. Роль и проблемы моделирования в системном анализе.
.Моделирование
Модель в широком понимании — это образ (в том числе условный или мысленный) какого-либо объекта или системы объектов, используемый при определенных условиях в качестве их «заместителя» или «представителя».
Модель — это упрощенное подобие объекта, которое воспроизводит интересующие нас свойства и характеристики объекта-оригинала или объекта проектирования.
Примеры. Моделью Земли служит глобус, а звездного неба — экран планетария. Чучело животного есть его модель, а фотография на паспорте или любой перечень паспортных данных - модель владельца паспорта.
Моделирование связано с выяснением или воспроизведением свойств какого-либо реального или создаваемого объекта, процесса или явления с помощью другого объекта, процесса или явления.
Моделирование — это построение, совершенствование, изучение и применение моделей реально существующих или проектируемых объектов (процессов и явлений).
Почему мы прибегаем к использованию моделей вместо попыток «прямого взаимодействия с реальным миром»? Можно назвать три основные причины.
Первая причина — сложность реальных объектов. Число факторов, которые относятся к решаемой проблеме, выходит за пределы человеческих возможностей. Поэтому одним из выходов (а часто единственным) в сложившейся ситуации является упрощение ситуации с помощью моделей, в результате чего уменьшается разнообразие этих факторов до уровня восприимчивости специалиста.
Вторая причина — необходимость проведения экспериментов. На практике встречается много ситуаций, когда экспериментальное исследование объектов ограничено высокой стоимостью или вовсе невозможно (опасно, вредно, ограниченность науки и техники на современном этапе).
Третья причина — необходимость прогнозирования. Важное достоинство моделей состоит в том, что они позволяют «заглянуть в будущее», дать прогноз развития ситуации и определить возможные последствия принимаемых решений.
Среди других причин можно назвать следующие:
• исследуемый объект либо очень велик (модель Солнечной системы), либо очень мал (модель атома);
• процесс протекает очень быстро (модель двигателя внутреннего сгорания) или очень медленно (геологические модели);
• исследование объекта может привести к его разрушению (модель самолета, автомобиля).
Цели моделирования
Человек в своей деятельности обычно вынужден решать две задачи — экспертную и конструктивную.
В экспертной задаче на основании имеющейся информации описывается прошлое, настоящее и предсказывается будущее. Суть конструктивной задачи заключается в том, чтобы создать нечто с заданными свойствами.
Для решения экспертных задач применяют так называемые описательные модели, а для решения конструктивных — нормативные.
Виды моделирования
Моделирование широко распространено, поэтому достаточно полная классификация возможных видов моделирования крайне затруднительна хотя бы в силу многозначности понятия «модель», широко используемого не только в науке и технике, но и, например, в искусстве. Применительно к естественно-техническим, социально-экономическим и другим наукам принято различать следующие виды моделирования:
• концептуальное моделирование, при котором с помощью некоторых специальных знаков, символов, операций над ними или с помощью естественного или искусственного языков истолковывается основная мысль (концепция) относительно исследуемого объекта;
• интуитивное моделирование, которое сводится к мысленному эксперименту на основе практического опыта работников (широко применяется в экономике);
• физическое моделирование, при котором модель и моделируемый объект представляют собой реальные объекты или процессы единой или различной физической природы, причем между процессами в объекте-оригинале и в модели выполняются некоторые соотношения подобия, вытекающие из схожести физических явлений;
• структурно-функциональное моделирование, при котором моделями являются схемы, (блок-схемы), графики, чертежи, диаграммы, таблицы, рисунки, дополненные специаль-ными правилами их объединения и преобразования:
• математическое (логико-математическое) моделирование, при котором моделирова-ние, включая построение модели, осуществляется средствами математики и логики;
• имитационное (программное) моделирование, при котором логико-математическая модель исследуемого объекта представляет собой алгоритм функционирования объекта, реализованный в виде программного комплекса для компьютера.