Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на госы 2014.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.18 Mб
Скачать
  1. Первый закон термодинамики. Работа, внутренняя энергия. Энтальпия, располагаемая работа.

Первый закон термодинамики (частный случай изменения энергии).

Энергия не может самопроизвольно возникать и исчезать, а может переходить из одного вида в другой в результате энергетического взаимодействия.

Q = ΔU + A. где ΔU — изменение внутренней энергии, Q — количество теплоты, переданное системе, А — работа внешних сил.

Работа – передача энергии в результате упорядоченного макроскопического движения, а энергия, передаваемая в данном процессе – работа процесса. 1 ккал=4,1868 Дж.

Когда работа совершается термодинамической системой (чаще всего это газ, который совершает работу), то работа совершенная газом при постоянном давлении определяется как: W = p×dV, где W - работа, p - давление, а dV -изменение объема. В случаях, когда давление не является постоянным, работа может быть представлена интегральным образом, как площадь поверхности под кривой в координатах давление, объем, которые представляют происходящий процесс.

Внутренняя энергия системы – часть энергии системы взаимодействующих тел., определяемую внутренними параметрами этой системы тел. ВЭ тела складывается из кинетической энергии хаотического теплового движения атомов и молекул и потенциальной энергии их взаимодействия.

Энтальпия - это "термодинамический потенциал" используемый в химической термодинамике реакций, это функция состояния термодинамической системы, равная внутренней энергии системы и произведению давления системы на объем системы. Это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия определяется как:

H = U + PV (Дж), где H = энтальпия, U = внутренняя энергия, P = давление, V = объем системы.

При постоянном давлении изменение энтальпии равно количеству теплоты, подведенной к системе, поэтому энтальпию часто называют тепловой функцией или теплосодержанием. В состоянии термодинамического равновесия энтальпия системы минимальна.

Энтальпия является точно измеряемым параметром, когда определены способы выражения трех других поддающихся точному определению параметров формулы выше.

Располагаемая работа = адиабатическая работа, которую может выполнить машина без учета потерь.

  1. Уравнения состояния идеального газа. Определение его параметров.

Идеальный газ — газ, молекулы которого представляют из себя материальные точки не связанные между собой силами взаимодействия, т. е. находятся в хаотическом движении.

Уравнение состояния идеального газа, полученное Клапейроном в 1834 году для 1 кг газа, имеет вид:PV=RT, где R — газовая постоянная. Уравнение (1) является обобщенной формой известных законов Бойля-Мариотта (1662 г.), Гей-Люссака (1802 г.) и Шарля. Все эти законы являются законами идеального газа:

  1. при T=const - уравнение Бойля-Мариотта:PV=const

  2. при Р = const - закон Гей-Люссака:

V/T=const

  1. при V = const - закон Шарля:

P/T=const.

3.Теплоемкость. Ее виды. Связь между теплоемкостями. Закон Майера. Средние и истинные теплоемкости. Теплоемкость смеси газов.

Теплоемкость – теплофизическая характеристика, которая определяет способность тел отдавать или воспринимать теплоту, чтобы изменять температуру тела. Отношение количества теплоты, подведенной (или отведенной) в данном процессе, к изменению температуры называется теплоемкостью тела (системы тел):C=dQ/dT, где — элементарное количество теплоты; — элементарное изменение температуры.

Теплоемкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить ее температуру на 1 градус. Единицей теплоемкости будет Дж/К.

В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике, различают массовую, объемную и мольную теплоемкости.

Массовая теплоемкость — это теплоемкость, отнесенная к единице массы рабочего тела,c=C/m

Единицей измерения массовой теплоемкости является Дж/(кг×К). Массовую теплоемкость называют также удельной теплоемкостью.

Объемная теплоемкость — теплоемкость, отнесенная к единице объема рабочего тела, где и — объем и плотность тела при нормальных физических условиях. C’=c/V=cp. Объемная теплоемкость измеряется в Дж/(м3×К).

Мольная теплоемкость — теплоемкость, отнесенная к количеству рабочего тела (газа) в молях,Cm=C/n, где n — количество газа в молях.

Мольную теплоемкость измеряют в Дж/(моль×К).

Массовая и мольная теплоемкости связаны следующим соотношением:

Объемная теплоемкость газов выражается через мольную как

Где м3/моль — мольный объем газа при нормальных условиях.

Уравнение Майера: Ср – Сv = R.

Учитывая, что теплоемкость непостоянна, а зависит от температуры и других термических параметров, различают истинную и среднюю теплоемкости. В частности, если хотят подчеркнуть зависимость теплоёмкости рабочего тела от температуры, то записывают её как C(t), а удельную – как c(t). Обычно под истинной теплоёмкостью понимают отношение элементарного количества теплоты, которое сообщается термодинамической системе в каком-либо процессе к бесконечно малому приращению температуры этой системы, вызванному сообщенной теплотой. Будем считать C(t) истинной теплоёмкостью термодинамической системы при температуре системы равной t1, а c(t) - истинной удельной теплоёмкостью рабочего тела при его температуре равной t2 . Тогда среднюю удельную теплоёмкость рабочего тела при изменении его температуры от t1 до t2 можно определить как

Обычно в таблицах приводятся средние значения теплоемкости cср для различных интервалов температур, начинающихся с t1=00C. Поэтому во всех случаях, когда термодинамический процесс проходит в интервале температур от t1 до t2, в котором t1≠0, количество удельной теплоты q процесса определяется с использованием табличных значений средних теплоемкостей cср следующим образом:

Значения средних теплоемкостей и , находят по таблицам.

Теплоёмкость смеси рабочих тел (газовой смеси)

Теплоемкость газовой смеси вычисляется по составу газовой смеси и теплоемкостям отдельных газов, входящих в данную газовую смесь. Газовая смесь может быть задана массовым, объемным и молярным составом.