
- •1.Нервная ткань. Нейроны. Нейроглия
- •2.Проведение. Физиология синапсов. Медиаторы: ацетилхолин, моноамины, катехоламины, гамк. Ацетилхолинэстераза, мао.
- •Классификация
- •Аминокислоты
- •Катехоламины
- •Другие моноамины
- •Другие представители
- •3. Физиология малых нейронных систем. Возвратное и реципрокное торможение, латеральное торможение. Облегчение и окклюзия.
- •4. Свойства высшей нервной деятельности человека, ее характеристика, физиологические основы.
- •5. Потенциал покоя. Распределение основных катионов и анионов по обе стороны цитоплазматической мембраны. Ионный равновесный потенциал. Уравнение Нернста. Потенциал покоя. История открытия.
- •Общие положения.
- •Формирование потенциала покоя.
- •Вывод уравнения Нернста.
- •6. Потенциал действия. Последовательность изменения ионной проницаемости мембраны в процессе развития потенциала действия. Проведение по миелинизированным и демиелинизированным нервным волокнам.
- •Распространение потенциала действия По немиелинизированным волокнам.
- •По миелинизированным волокнам.
- •7. Холинэргический синапс. М- и н-холинорецепторы.
- •Биохимия.
- •Воздействие на холинорецепторы.
- •8. Регуляция выделения медиатора в синаптическую щель. Обратный захват. Вторичные посредники.
- •Б) Механизмы выделения норадреналина в синаптическую щель
- •9. Адренергический синапс. Α- и β- адренорецепторы. Регуляция выделения медиатора в синаптическую щель. Обратный захват. Вторичные посредники.
- •Локализация и основные эффекты
- •10. Возбуждающий постсинаптический потенциал. Гамк. Тормозящий постсинаптический потенциал.
- •Получение
- •Биологическая активность в нервной системе.
- •За пределами нервной системы.
- •11. Пресинаптическое торможение. Возвратное торможение. Латеральное торможение. Реципрокное торможение.
- •12. Временная суммация. Пространственная суммация. Дивергенция. Конвергенция.
- •13. Рефлексы. Сухожильные рефлексы.
- •Общий механизм формирования рефлекса
- •Классификация
- •14. Структура и функция отделов головного мозга.
- •Строение и функции отделов головного мозга
- •15. Классификация связей отделов мозга. Иерархия функций отделов мозга.
- •17. Гомеостаз. Система регуляции функций внутренних органов. Лимбичекая система.
- •1. Физиологическая регуляция
- •2. Иерархическая структура регуляции физиологических функций
- •3. Регуляции по возмущению и по отклонению
- •18. Симпатический отдел вегетативной нервной системы
- •19. Парасимпатический отдел вегетативной нервной системы
- •20. Гипоталамус
- •21. Объективная и субъективная физиология органов чувств
- •23. Слуховой анализатор. Этапы обработки слуховой информации
- •23. Акустический рефлекс стременной мышцы
- •24. Зрительный анализатор
- •25. Строение и функции сетчатки. Рецепторные поля с on – off – центром. Механизмы адаптации
- •Темновая и световая адаптация
- •26. Обонятельный анализатор
- •27. Вкусовой анализатор
- •28. Память
- •29. Внимание
- •Виды внимания
- •Свойства внимания
- •30. Интегративные механизмы цнс. Латерализация функций головного мозга.
- •31. Основы физиологии функциональных систем
- •32. Проводящие пути спинного и головного мозга
- •33. Черепно-мозговые нервы
- •34. Мозжечок. Кора мозжечка, подкорковые ядра. Проводящие пути Мозжечок
- •35. Системная организация целостных поведенческих актов
- •36. Формирование акцепторов результата действия. Обратная связь.
- •37. Строение и функции продолговатого мозга
- •38. Строение и функции моста
- •39. Строение и функции среднего мозга
- •40. Строение и функции промежуточного мозга
- •41. Подкорковые ядра конечного мозга. Стриопаллидарная система.
- •42. Кора конечного мозга. Доли коры. Сенсорная, моторная и ассоциативная кора.
- •43. Сенсорная, моторная и ассоциативная кора
- •44. Ретикулярная формация
- •45. Условные и безусловные рефлексы. Рефлекторная дуга.
- •Безусловные рефлексы
- •Условные рефлексы
- •46. Механизмы зрительного восприятия. Цветовое зрение.
- •47. Строение спинного мозга. Проводящие пути.
- •48. Произвольные и непроизвольные движения. Этапы формирования движения.
- •49. Латерализация функций головного мозга. Опыты Сперри.
- •Сперри (Sperry), Роджер род. 20 августа 1913 г.
- •50. Рецепторные системы
- •51. Роль эндокринной системы в развитии и функционирования цнс
- •52. Стимул. Характеристика стимула, соотношение между ними
- •Психофизика ощущений
- •53. Степенная функция Стивенса. Закон Вебера – Фехнера.
- •54. Речь. Зоны Брока и Вернике. Моторная и сенсорная афазия. Роль мозжечка.
- •Поле Вернике (поле Бродмана 22), речевой центр Вернике
- •55. Желудочки мозга
- •56. Проприорецепция. Механорецепторы. Терморецепторы. Проводящие пути.
- •Механорецепторы
Вывод уравнения Нернста.
Нернст
изучал поведение электролитов при
пропускании электрического тока и
открыл закон. Закон устанавливает
зависимость между электродвижущей
силой (разностью потенциалов) и ионной
концентрацией. Уравнение Нернста
позволяет предсказать максимальный
рабочий потенциал, который может быть
получен в результате электрохимического
взаимодействия, когда известны давление
и температура. Таким образом, этот закон
связывает термодинамику с электрохимической
теорией в области решения проблем,
касающихся сильно разбавленных растворов.
,
где
— электродный потенциал,
— стандартный электродный потенциал, измеряется в вольтах;
— универсальная газовая постоянная, равная 8.31 Дж/(моль·K);
— абсолютная температура;
— постоянная Фарадея, равная 96485,35 Кл·моль−1;
— число молей электронов, участвующих в процессе;
и
— активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.
Если
в формулу Нернста подставить числовые
значения констант
и
и
перейти от натуральных
логарифмов к десятичным,
то при
получим
6. Потенциал действия. Последовательность изменения ионной проницаемости мембраны в процессе развития потенциала действия. Проведение по миелинизированным и демиелинизированным нервным волокнам.
Потенциа́л де́йствия — волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд — быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса.
Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат одни и те же явления.
Проведение по миелинизированным и демиелинизированным нервным волокнам.
Распространение потенциала действия По немиелинизированным волокнам.
По немиелинизированному волокну потенциал действия распространяется непрерывно. Проведение нервного импульса начинается с распространением электрического поля. Возникший потенциал действия за счет электрического поля способен деполяризовать мембрану соседнего участка до критического уровня, в результате чего на соседнем участке генерируются новые потенциалы. Сам потенциал действия не перемещается, он исчезает там же, где возник. Главную роль в возникновении нового потенциал действия играет предыдущий.
Если внутриклеточным электродом раздражать аксон посередине, то потенциал действия будет распространяться в обоих направлениях. Обычно же потенциал действия распространяется по аксону в одном направлении (от тела нейрона к нервным окончаниям), хотя деполяризация мембраны происходит по обе стороны от участка, где в данный момент возник потенциал. Одностороннее проведение потенциала действия обеспечивается свойствами натриевых каналов — после открытия они на некоторое время инактивируются и не могут открыться ни при каких значениях мембранного потенциала (свойство рефрактерности). Поэтому на ближнем к телу клетки участке, где до этого уже «прошел» потенциал действия, он не возникает.
При прочих равных условиях распространение потенциала действия по аксону происходит тем быстрее, чем больше диаметр волокна. По гигантским аксонам кальмара потенциал действия может распространяться почти с такой же скоростью, как и по миелинизированным волокнам позвоночных (около 100 м/c).