Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 1-2 Экзамен.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
562.69 Кб
Скачать
  1. Кинематика криволинейного движения мт

Тангенциальное, нормальное и полное ускорение. Формулы расчёта тангенциального и нормального ускорения. Принцип относительности и суперпозиции движений.

Тангенциальное (касательное) ускорение  – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения   совпадает с направлением линейной скорости или противоположно ему.

Нормальное ускорение ( )  – характеризует изменение скорости по направлению и совпадает с нормалью траектории к центру её кривизны. Нормальное ускорение зависит от радиуса R окружности, по дуге которой тело движется в данный момент. . Вектор всегда направлен к центру окружности.

Полное ускорение, так как нормальное и тангенциальное ускорения взаимно перпендикулярны, полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

Направление полного ускорения также определяется правилом сложения векторов:

Принцип относительности движения: Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчёта равноправны. Однако кинематические характеристики (траектория, перемещение, скорость) в разных системах оказываются различными. Величины, зависящие от выбора систем отсчёта, в которой производится их измерение, называют относительным.

Принцип суперпозиции движения: один из общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит: результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

  1. Кинематика вращательного движения твёрдого тела относительно неподвижной оси.

Угловое перемещение, угловая скорость и угловое ускорение. Связь между угловыми и линейными кинематическими величинами. Уравнение зависимости угла поворота от времени.

Угловое перемещение:  Векторная величина, характеризующая изменение угловой координаты в процессе её движения. Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения удобно рассматривать угловое перемещение (угол поворота), измеряемое в радианах.

Л инейное перемещение конца радиус-вектора связанно с углом поворота соотношением , в векторном виде

При рассмотрении таких величин, как радиус-вектор, скорость, ускорение, вопрос в выборе их направления не возникает. Такие векторы называются полярными. Векторы типа , направление которых связанно с направлением вращения называют аксиальными. Они не имеют точек приложения – их можно отложить от любой точки оси вращения.

Угловая скорость ( ): Если за промежуток времени тело проворачивается на угол , быстрота его вращения характеризуется угловой скоростью. .Вектор направлен вдоль оси вращения (как и вектор ), направление можно определить пользуясь правилом правого винта. Если направление вращения винта совпадает с вращением тела, то конец винта укажет направление вектора . Если = const, то вращательное движение называют равномерным. Единица угловой скорости – радиан в секунду (рад/с).

Время одного полного оборота тела вокруг оси называют периодом вращения T, а величину V, обратную периоду – частотой . За один период угол поворота радиус-вектора точки равен 2π рад.

Угловое ускорение: изменение вектора со временем характеризуют вектором углового ускорения . . Направление вектора совпадает с направлением вектора (приращение вектора ). При ускоренном вращении совпадает с вектором , при замедленном вращении противоположно . Единица углового ускорения – радиан в секунду в квадрате (рад/с2).

Связь между угловыми и линейными кинематическими величинами:

связь между линейной и угловой скоростью ; R – радиус окружности, по которой движется точка А, - угловая скорость точки А

связь между тангенциальным и угловым ускорением (ось вращения неподвижна)

связь между нормальным (центростремительным) ускорением, угловой скоростью и линейной скоростью.

Модуль полного ускорения

Уравнение зависимости угла поворота от времени:

При равномерном движении точки по окружности её траекторией является дуга. Точка движется с постоянной угловой скоростью , а зависимость угла поворота точки от времени является линейной: , где — начальное значение угла поворота.

Эта же формула определяет угол поворота абсолютно твёрдого тела при его равномерном вращении вокруг неподвижной оси, то есть при вращении с постоянной угловой скоростью . Важной характеристикой данного типа движения является линейная скорость материальной точки . Нужно помнить, что равномерное движение по окружности — движение равноускоренное. Хотя модуль линейной скорости и не меняется, но меняется направление вектора линейной скорости (из-за нормального ускорения).