Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 1-2 Экзамен.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
562.69 Кб
Скачать
  1. Кинематика прямолинейного движения

Материальная точка. Система отсчёта. Скорость и ускорение. Траектория, путь, перемещение. Уравнение траектории.

Кинематика – раздел механики, изучающий закономерности движения тел независимо от причин, вызывающих это движение

Материальная точка: Для описания движения тел в зависимости от условий конкретных задач в механике используются различные физические модели. Простейшей моделью является материальная точка. Материальная точка позволяет определять положение тела, независимо от размеров, формы и т.п. Тело можно считать материальной точкой только в тех случаях, когда его размеры, форма, вращение не имеют существенного значения в условиях решаемой задачи и ими можно пренебречь

Система отсчёта: Для определения положения движущегося тела в любой момент времени, вида движения, его скорости и т.п. необходимы три вещи: прибор для отсчета времени, тело отсчета и связанная с ним система координат. Система координат, тело отсчета и прибор для измерения времени образуют систему отсчета. Относительно системы отсчета и рассматривают движение тела. В декартовой системе координат положение точки в данный момент времени по отношению к этой системе характеризуется тремя координатами X,Y,Z или радиус вектором , проведенным из начала системы координат к точке. При этом проекции радиус-вектора на оси системы отсчета эквивалентны координатам материальной точки: X,Y,Z. . В процессе движения МТ её координаты с течением времени изменяются. В общем случае её движение определяется скалярным ур-ниями: x=x(t); y=y(t); z=z(t) или = (t) – кинематические ур-ния движения материальной точки.

Траектория движения: Траектория движения материальной точки – линия описываемая этой точкой в пространстве. В зависимости от формы траектории поступательное движение может быть прямолинейным или криволинейным.

Уравнение траектории: Если точка движется относительно некоторой системы координат, то координаты точки изменяются с течением времени. Уравнения, выражающие функциональные зависимости координат движущейся точки от времени, называют уравнениями движения точки в системе координат.

Движение точки в пространстве задается тремя уравнениями: x = f1(t); y = f2(t); z = f3(t);

Движение точки в плоскости (рис. 203) задается двумя уравнениями: x = f1(t); y = f2(t);

Системы уравнений (1) или (2) называют законом движения точки в координатной форме.

Путь: Пройденный путь равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина. Длина участка траектории пройденного МТ с начала отсчета времени, называется длинной пути ( ) и является скалярной функцией времени (t).

Перемещение: Направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение – векторная величина. Вектор проведённый из начального положения движущейся точки в положение её в данный момент времени называется перемещением. При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения равен пройденному пути .

Скорость (V): Величина, характеризующая в каждый данный момент времени направление и быстроту движения точки. Вектор скорости всегда направлен вдоль касательной в ту сторону, куда движется точка. Числовое значение скорости в любой момент времени выражается производной от расстояния по времени:  . Единица скорости – метр за секунду (м/с).

Ускорение (а): Скорость движения может изменяться как по модулю, так и по направлению. Быстрота изменения скорости характеризуется вектором ускорения . Среднее ускорение – отношение изменения скорости к промежутку времени , в течении которого произошло это изменение. . Вектор среднего ускорения совпадает по направлению с вектором изменения скорости. Ускорение – векторная величина, равная первой производной скорости по времени. Единица ускорения – метр на секунду в квадрате (м/с2).

При использовании для описания движения декартовой системы координат положение материальной точки задаётся координатами X,Y,Z. При движении точки эти координаты изменяются во времени, и её движение описывается ур-ниями: x=x(t); y=y(t); z=z(t). В этом случае векторы скорости можно разложить на три взаимно перпендикулярные компоненты: причём , а вектор ускорения (а) на причём