Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДИПЛОМ.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
375.81 Кб
Скачать

1.2 Процессоры назначение, типы, принцип работы, особенности.

Центральный процессор, далее процессор, является одним из главных компонентов компьютера. Часто его называют ЦПУ или CPU (Central Processor Unit - Центральное Процессорное Устройство), а также кристалл, камень, хост-процессор. Именно он выполняет все основные вычисления. И чем мощнее процессор, тем быстрее работает компьютер.

Современные персональные компьютеры используют, как правило, определенный алгоритм обработки данных, называемый архитектурой Фон Неймана, когда инструкции и сами данные хранятся в одной памяти, а сам процесс обработки построен на циклической последовательной обработке данных. Правда, именно последовательность обработки является узким местом такой архитектуры, так как любое данное должно последовательно пройти через процессор, хотя само вычисление может быть однотипным.

Из иных алгоритмов назовем Гарвардскую архитектуру, когда данные и программный код используют разную память.  Однако в этом случае сложно использовать методы программирования, когда нужно поменять код в процессе выполнения программы, нельзя оперативно перераспределять память и т.д. Используется в встраиваемых компьютерах. Другой алгоритм, параллельный, применяется в суперкомпьютерах для ускорения процесса вычисления.

Существуют следующие основные характеристики центрального процессора: тактовая частота, количество ядер, установленная кэш память, вид оперативной памяти, с которой работает процессор, сокет (разъем) и частота системной шины.

Тактовая частота определяет, на какой частоте работает центральный процессор. За один такт может выполняться несколько операций. Чем выше частота, тем быстрее работает компьютер. В 90х годах и в начале 2000х основной фактор увеличения производительности компьютера было увеличение тактовой частоты. Однако со временем оказалось, что существует физический предел увеличения тактовой частоты. Современные производительные процессоры выпускаются с тактовыми частотами от 1.8 до 4 Мгц (2 Мгц обозначает, что за секунду происходит 2 миллиона колебаний, во время которых происходит работа процессора). Бюджетные варианты имеют меньшую частоту, которая меньше указанной выше.

Поэтому высокопроизводительные процессоры стали выпускаться с несколькими конвейерами, потомядрами. Каждое ядро практически представляет собой отдельный процессор. Чем больше ядер, тем быстрее работает компьютер. Конвейер это промежуточное звено между одноядерным и многоядерным процессором. На компьютере обычно работает несколько задач, например, операционная система, антивирусная программа, браузер и прочее. Если каждая из них будет работать на своем ядре, то они будут работать параллельно друг с другом. Можно распараллелить и обычную программу, но производители математического обеспечения пока еще редко это делают. Но уже появляются первые программы, которые могут работать с несколькими ядрами одновременно, например, Photoshop.

Данные для работы процессора поступают из оперативной памяти, но в силу того, что память медленнее, чем процессор, то процессор может часто простаивать. Чтобы этого не оказалось, между центральным процессором и оперативной памятью располагают кэш память, которая более быстрая, чем оперативная память. Она работает как буфер. Данные из оперативной памяти посылаются в кэш память и затем в центральный процессор. Когда процессор требует следующее данное, то, если оно имеется в кэш памяти, то берется из него, а если нет, то происходит обращение к оперативной памяти. Дело в том, что программы имеют свойство работать последовательно, выполняя одну команду за другой или производя операции в цикле. Если выполняется цикл, то данные для работы цикла могут находиться в кэше и обращение к оперативной памяти минимально. Если программа выполняется последовательно одна команда за другой, то когда одна команда выполняется, то коды следующих команд загружаются из оперативной памяти в кэш. Это сильно убыстряет работу, так как ожидание центрального процессора сокращается.

Существует несколько видов кэш памяти. Самая быстрая кэш память 1го уровня, которая находится в ядре процессора. В силу того, что она находится в ядре, то она небольшая по размерам, потому что увеличение объема приводит к сложности процессора. Объем ее составляет от 8 до 128 килобайт.

Следующая кэш память 2го уровня находится также в процессоре, но не в ядре. Она более быстрая, чем оперативная память, но менее, чем кэш память первого уровня. Размер ее может быть от 128 килобайт до нескольких мегабайт.

Существует кэш память 3го уровня, которая более быстрая, чем оперативная память, но менее, чем кэш память второго уровня.

Чем больше объем этих видов памяти, тем лучше, тем быстрее работает процессор и соответственно компьютер.

Как видно из сказанного выше, чем быстрее работает оперативная память, тем лучше. Поэтому следует знать, какую память поддерживает процессор. Он может поддерживать память типа DDR, DDR2, DDR3. Эти виды памяти не совместимы друг с другом. DDR3 работает быстрее, чем DDR2, DDR2 работает быстрее чемDDR.

Следующей характеристикой является сокет (или разъем), в который вставляется центральный процессор. Если процессор предназначен для определенного вида сокета, например, Socket 478, то его нельзя установить вSocket 479. Между тем, на материнской плате находится только один сокет для центрального процессора и он должен соответствовать типу процессора.

Также основной характеристикой является частота системной шины. Чем больше частота системной шины, тем больше данных передается за отрезок времени. За один такт можно передать для старых компьютеров один бит, для современных несколько. Имеется другой показатель – пропускная способность шины. Он равен частоте системной шины, умноженной на количество бит, которые можно передать за один такт. Если частота системной шины равна 100 Мгц, а за один такт передается два бита, то пропускная способность будет 200 Мбит/сек. Если можно передать за один такт 8 бит, то пропускная способность равна 800 Мбит/сек. Ясно, что быстродействие во втором случае будет выше, несмотря на то, что частота системной шины осталась одна и та же. В настоящее время пропускная способность шины начинает исчисляться в гигабитах (или в десятках гигабитов) в секунду. Чем выше этот показатель, тем лучше.

Существуют и другие показатели, которые убыстряют работу центрального процессора. Первые компьютеры имели центральный процессор, который работал только с целыми числами. Для того, чтобы выполнить операции с числами с плавающей точкой, нужны были подпрограммы. Со временем стали производить сопроцессор с плавающей точкой, который был специализирован для выполнения арифметических действий. Так как операции с целыми числами занимают основное время процессора (в силу их большого количества), то сопроцессор часто не устанавливали. Сопроцессор требовался практически только для научных и инженерных вычислений. На материнской плате было два разъема: один для установки процессора, который работал с целыми числами и разъем для работы сопроцессора, выполняющего операции с плавающей точкой (форматы чисел приведены в описании программирования на языке Basic).

Со временем сопроцессор стали устанавливать вместе с процессором (в середине 90х годов) в один корпус. Так как сопроцессор большее время находился в ожидании, то решено было использовать его для дополнительных команд. Так появился набор команд ММХ, который содержал 57 новых команд. Так как процессор работы с плавающими числами имел разрядность в 64 бит, то команда ММХ упаковывал несколько данных в одну команду, размером в 64 бит (данные могут иметь размер в 2, 4, 8 байт). Затем выполняется одна команда. Если бы эти действия выполнял процессор, работающий с целыми числами, то ему бы пришлось выполнять несколько команд, меньших по размеру, чем 64 бит.

Программа определяла, работает ли процессор с командами ММХ, и в зависимости от ответа выполнялась часть программы либо с командами ММХ (что ускоряло работу), либо без них. Если программа не имела возможность работы с командами ММХ, то работал целочисленный процессор. Применение данных команд позволило увеличить производительность до 60 % (на задачах, которые требуют ММХ).

Почему в основном выполняются целочисленные операции? Дело в том, что основной объем операций на компьютере занимают операции с видео (графикой) и звуком. Эти программы используют целые числа. Так, описание изображения на экране можно представить как матрицу значений цвета каждого пикселя, а это целое число. Если нужно наложить одно изображение на другое, то опять-таки используются целые числа. Основные операции – это логические операции (логический и арифметический сдвиги, операции и, или, исключающее илии пр.), операции сравнения, и сдвиговые операции. Конечно, многие операции по обработке видео выполняет видеопроцессор, но он не всегда справляется с этой задачей. Поэтому введение команд ММХ увеличивает производительность компьютера.

Компания AMD продолжила развитие данного набора, введя набор 3DNow!, используя новые 21 команду.

Через год компанией Intel был введен новый набор данных: SSE (Streaming SIMD Enhanced - потоковое SIMD-расширение, где SIMD - Single Instruction, Multiple Data - одна инструкция — множество данных). Такие команды уже были 128-битные, появились новые команды и восемь новых регистров для инструкций ММХ. До этого для команд ММХ использовались регистры процессора с плавающей точкой. Добавилось 70 новых команд: пересылки, арифметические, команды сравнения, распаковки, преобразования типов и логические операции. Данный набор начал использоваться в процессорах Pentium III.

SSE2 был разработан, чтобы вытеснить набор ММХ, начал использоваться в процессорах Pentium IV и расширил количество команд до 144.

SSE3 был представлен в 2004 году компанией Intel и вводил 13 новых команд. В частности была добавлена команда для преобразования числа с плавающей точкой в целое и сложения и вычитания нескольких значений, что упростило ряд 3D операций.

SSE4 был представлен в 2006 году и состоит из 54 новых команд (47 относятся к SSE4.1, 7 к SSE4.2). Новые команды позволяли ускорить работу по компенсации движения в видео, векторизации программ и пр.

Кроме этих, имеются и другие наборы: Extended MMX или ЕММI (Extended Multi-Media Instructions –расширенные мульти-медиа инструкции) введенный компанией Cyrix для процессоров серии 686, 3DNow!Extended компанией AMD, которые устанавливаются на процессоры, начиная с Athlon, SSSE3 с новыми 16 командами, которые работают в Intel Core 2 и Xeon, AVX появившихся в 2008 году и имеющих новые команды длиной 256 бит.

Имеются и другие виды усовершенствования работы процессоров. Каждая из улучшает работу компьютера, и эти улучшения вводятся в новые типы процессоров. Первые компьютеры выполняли одну операцию за несколько тактов. Современные за один такт выполняют несколько операций. То есть, от поколения процессоров к следующему поколению улучшается структура процессора и не всегда эти улучшения имеют свое название или имеют название, которое интересно только специалистам.

Сказать как именно и на сколько процентов изменения улучшают работу очень трудно, так как имеется много видов программ. Некоторые требуют больше операций ввода-вывода с жестких дисков, некоторые имеют один вид преобладающих операций, другие обладают иными возможностями, поэтому когда сравнивают процессоры, то их тестируют на разных видах программ, например, графических, игровых и т.д. и потом усредняют по определенным критериям. Кроме того, имеет большое значение, какие другие устройства (материнская плата, в том числе чипсет, видеоподсистема и пр.) установлены на тестируемом компьютере, что может давать разницу в несколько десятков процентов.

Сейчас будут рассматриваться процессоры серии х86, основанные на принципах работы моделей компаний Intel, AMD, Cyrix и других, функционирующих в персональных компьютерах. Так как эти процессоры имеют сходные характеристики, то они рассматриваются на основе процессоров компании Intel, которая до сих пор занимает лидирующие позиции в разработке и производстве центральных процессоров.

Под словом процессор будем понимать центральный процессор, который, как вытекает из названия, является основным в компьютере. Он производит основные вычисления и управляет работой системной шины по передаче данных между различными устройствами компьютера. Каждый процессор новой версии может обрабатывать те же программы, с которыми работал старый процессор, а после установки процессора не требуется использования драйверов и нового математического обеспечения.

Типы процессоров. Основной компанией, которая выпускает центральные процессоры для персональных компьютеров, является компания Intel.

Первые модели центрального процессора Intel помогала внедрить другим компаниям, в том числе и AMD, что способствовало распространению центральных процессоров семейства х86. Чтобы использовать 386 процессор, компания AMD добилась через суд разрешения на клонирование (то есть копирование) этого типа, но ей было запрещено использовать разработки компании Intel в следующих поколениях процессоров. Поэтому AMD стала разрабатывать следующие модели процессоров собственными силами и некоторые модели были довольно удачными, например, 486 с тактовой частотой 133 Мгц. Со временем обе компании стали разрабатывать новые виды и копировать удачные решения друг у друга. Для упрочения своих позиций компании создают новые возможности, так, компания AMD разработала систему 3DNow!, и хотя компания Intel до сих пор занимает лидирующие позиции в производстве центральных процессоров, рынок дешевых компьютеров постепенно в течение нескольких последних лет переходит к другим компаниям. В ходе этого состязания продукция компаний дешевеет и процессоры становятся все производительнее, а падение цен на процессоры происходит несколько раз в год, что выгодно потребителям.

Типы процессоров

Основными характеристиками процессоров является частота и количество разрядов, по которым можно адресовать данные. Частота измеряется в герцах, и чем больше она, тем быстрее работает процессор. Один герц обозначает один цикл в секунду и обычно указывается скорость работы в килогерцах (Кгц или 1 000 циклов в секунду), или мегагерцах (Мгц или 1 000 000 циклов в секунду), или гегагерцах (Ггц равен 1 000 000 циклов в секунду). Повышение разрядности улучшает производительность компьютера. Рассмотрим основные типы процессоров, которые могут быть: Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium III и Pentium IV. Celeron обозначает урезанный вариант процессора Pentium. После названия обычно приводится тактовая частота процессора, например, Celeron 450, что обозначает тип процессора (Celeron) и тактовую частоту (450 Мгц), на которой он работает.

Одной из главных характеристик процессора является количество данных, которыми он может обмениваться с внешними устройствами или пропускная способность шины. Отметим, что оперативная память является внешним устройством для процессора. При этом, чем больше данных одновременно будет отправлено/получено, тем выше производительность процессора. Эта характеристика определяется количеством линий системной шины для одновременной передачи данных. Чем их больше, тем больше данных может быть передано. В первых процессорах было от 8 до 16 подобных линий, затем 32, а для связи с оперативной памяти - 64.

С появлением новых видов процессоров действует эвристическое правило Гордона Мура (одного из основателей компании Intel), которое гласит, что каждое десятилетие количество элементов в процессоре увеличивается в 100 раз, а цены на процессоры за полтора года падают в два раза.

Каждый новый вид процессора имел преимущества перед предыдущими моделями. Как правило, это касается его быстродействия, например, вводятся новые виды команд, скажем, ММХ для того, чтобы повысить производительность процессора при работе с графикой (как правило, это нужно для игровых программ). Кроме того, могут вводиться новые элементы в сам процессор (например, кэш внутри процессора), которые не меняют принципов работы процессора, но обеспечивают его повышенную производительность.

Рассмотрим основные виды процессоров.

Pentium (или 586, или Р5) создан в 1993 году и имеет тактовые частоты: 60, 66, 75, 90, 100, 120, 133, 150, 166, 200 Мгц. Внутренняя разрядность - 32, внешней шины данных - 64 и адресной шины данных - 32, с той же адресацией - 4Гбайт (232). Процессоры становятся все более и более сложными по количеству элементов, число которых составляет уже миллионы. Чтобы поместить их на одну плату небольшого размера, используется технология CMOS, причем размер элементов становится все меньше и меньше. Первые модели процессора Pentium (Pentium 60 и 66) выпускались в корпусе SPGA с 273 контактами, устанавливались в сокет 4, с минимальным размером СМОS- технологии 0,8 мкм, и их называют процессорами первого поколения. Рассчитаны они были на 5 вольт, поэтому сильно нагревались. Чем больше напряжение, тем сильнее нагревается процессор. Остальные типы процессоров уже относятся к второму поколению, называются Р54С, имели 0,6 и 0,35 мкм технологию, используют 3,3 вольт и меньше. Они имеют 296 контактный корпус SPGA, устанавливаются в сокет 5 и 7, и работают быстрее, чем системная шина, в отличие от процессоров первого поколения.

Pentium ММХ создан в 1997 году и имеет тактовые частоты: 166, 200, 233. Следующей моделью серии Pentium стал процес­сор Pentium с приставкой ММХ (Pentium ММХ - произносится «Пентиум эм-эм икс»), созданный компанией Intel и часто называемый мультимедиа. Процессоры предыдущих поколений обрабатывают одно данное в текущий момент времени и не могут обрабатывать несколько одновременно. Для того, чтобы убыстрить работу, были введено 57 новых инструкций и восемь 64-разрядных регистров (машинных команд), которые могут обрабатывать несколько данных в одной команде, что особенно важно для программ, работающих с изображением и звуком.

Принцип работы данного вида процессоров следующий. Несколько однотипных данных соединяются вместе до 64-разрядного целого числа и одной командой за один такт обрабатываются одновременно. Например, если данное имеет длину 16 разрядов, то одновременно можно выполнить 4 (64=4*16) однотипных операций. Отметим, что данные для команд ММХ помещаются в регистры процессора с плавающей запятой, а не в общие регистры. Процессор, позволяю­щий работать с ними, назван ММХ.

Pentium Pro создан в 1995 году и имеет тактовые частоты: 150, 166, 180, 200 Мгц. Внутренняя разрядность - 32, внешней шины данных - 64 и адресной шины данных - 36. Имеет кэш-память 1-го уровня для команд - 8 Кб и для данных - 8 Кб, включает встроенную в корпус кэш-память 2-го уровня, объем которой доходит до 1 мегабайта, повышенную устойчивость к сбоям, внутренний усовершенствованный сопроцессор, алгоритм предсказания ветвлений и другие возможности. В силу того, что этот процессор достаточно дорог, в домашних условиях и в небольших компаниях он используется редко.

Отличие этого процессора от процессора Pentium заключается в том, что, помимо встроенного кэша в процессор, он имеет кэш, который находится рядом с процессором в одном корпусе. Поэтому для передачи данных от процессора к кэш-памяти и обратно используется специальная шина данных. Если вначале кэш, встроенный в процессор или находящийся с ним в одном корпусе, назывался кэш-памятью первого уровня, а на материнской плате – 2-го уровня, то затем произошел переход к новому понятию, когда кэш, который находится в процессоре, называется кэшем первого уровня, кэш, который находится в корпусе с процессором и соединен шиной данных – 2-го уровня, тот, что находится на материнской плате – 3-го уровня.

Pentium II создан в 1997 году на основе Pentium Pro с возможностями ММХ и имеет тактовые частоты: 233, 266, 300, 333, 350, 400, 450 Мгц, двойную независимую шину (Dual Independent Bus), улучшающую пропускную способность шины, встроенный механизм самотестирования, дополнительные режимы пониженного потребления и другие возможности. Тактовая частота кэш-памяти 2-го уровня вдвое меньше тактовой частоты процессора. У процессора Pentium Pro тактовая частота совпадала с тактовой частотой процессора. Для процессора с кэш-памятью 2-го уровня был разработан специальный SECС- картридж (Single Edge Contact Cartridge – картридж с односторонним контактом), в котором разместили процессор и кэш-память 2-го уровня. При этом кэш-память 1-го уровня увеличила свой объем.

Картридж так назван потому, что выводы на нем расположены вдоль одной стороны. Кроме того, из-за многочисленности контактов, чтобы они плотно входили в паз, стали использоваться ZIF гнезда (Zero Insertion Force - нулевая сила вставки) с рычажком, при помощи которого можно зажать контакты. Если раньше разъем, куда вставляется процессор, назывался Socket 1, 2, 3, 4, 5, 6, 7, 8, то теперь название разъема стало называться Slot 1, который имеет 242 контакта. Все права на разработку данного разъема находятся у компании Intel, поэтому другие производители процессоров используют свои гнезда Socket, как правило, Socket 7.

Заметим, что процессор, спроектированный для одного вида разъема, в другой разъем не вставляется, поэтому при покупке материнской платы и процессора нужно убедиться в их соответствии.

Celeron является удешевленным вариантом процессора Pentium II. Первые процессоры выпускались без встроенной кэш-памяти, однако из-за резкого падения производительности ее со временем стали устанавливать, но меньшего объема, учитывая, что для повышения производительности требуется небольшое количество этой памяти (128 Кбайт), а при ее резком увеличении производительность возрастает на небольшую величину. Поэтому наличие небольшого объема кэш-памяти оправдано. Кроме того, эти процессоры выпускались для работы с системной шиной 66 Мгц, а не 100, и расположены они в SEPP, устанавливающийся в Socket 370, который имеет 370 контактов и конструктивно представляет собой прямоугольник, как и разъем Socket 7.

Pentium III (1999 г.) представляет собой дальнейшее развитие процессоров и позволяет работать с новым видом инструкций SIMD (Single Instruction Multiple Data - одиночная инструкция над одиночными данными, также называемая MMX2, KNI (Katmai New Instructions – новые команды Katmai)), которые работают с данными с плавающей запятой. Pentium III имеет старое название Katmai, является модификацией Pentium II. Данные операции повышают производительность трехмерной графики и видеоприложений. Кроме того, компания Intel осуществила переход на 0,18 мкм технологию (серии Coppermine и Xeon). Имеет тактовую частоту 533, 550, 600, 650, 667, 700, 733, 750, 800, 850, 866, 933, 1 000, 1 130, 1 200 и выше с частотой системной шины 100-133 Мгц, устанавливаются в корпусе PPDA в Socket 370 и SECC в Slot 1.

После того, как компания Intel ввела команды ММХ, компания AMD создала набор команд 3DNow!, которые повышают производительность компьютера, особенно для трехмерных задач в играх. Другие компании (Cyrix и пр.) также присоединились к этой технологии и стали выпускать процессоры, которые поддерживают данный набор команд, а компания Microsoft обеспечила поддержку этих команд в системе Windows. В ответ на эту разработку компания Intel и ввела новый набор команд SSE (Streaming SIMD Enhanced - потоковое расширение).

Pentium II имел несколько видов процессоров, которым дали наименование при их разработке, это: Klamath, Deshutes, для Pentium III – Katmai, Coppermine, Tanner, Cascades, для Celeron – Covington, Mendocino, Coppermine. Pentium IV с тактовой частотой 1,4 Ггц имеет название Willamate, имеет кэш-память 1-го уровня 256 Кб, второго 512-1024 Кб, использует системную шину 100 Мгц и 133 Мгц, которая передает за один такт несколько данных. Таким образом, пропускная способность шины 133 Мгц достигает 3,2 Гбайт/сек, вставляется в Socket 462. Вышеописанные процессоры выпускаются в основном компанией Intel. Другие компании также выпускают свои процессоры, причем их параметры не сильно отличались для 86, 286, 386. Однако в 486 расхождения стали увеличиваться.

Pentium IV (2001 г.) представляет собой дальнейшее развитие процессоров на основе гиперконвейерной обработки с глубиной на 20 стадий, улучшенное предсказание переходов, имеет блок быстрого выполнения команд (Rapid Execution Engine) и скорость системной шины 400, 533, 800 Мгц. Кэш-память первого уровня содержит 8 кб (16кб для процессоров по 0.09 нм технологии), второго – 256 Кб (512 кб для процессоров по 0.13 нм технологии), отслеживает выполнение команд (Execution Trace Cache). Кэш-память второго уровня работает на половинной частоте центрального процессора. Частоты процессора бывают 1 300, 1 400, 1 500, 1 800, 1 900, 2 000, 2 200, 2 400, 2 600, 2 800, 3 00, 3 060, 3 200, 3 400 и более Мгц.

В последних моделях этих процессоров все чаще применяется новая технология, называемая Hyper-Threading, впервые примененная компанией Intel. Еще эту технологию называют «многопотоковой». Эти процессоры устроены таким образом, что операционная система видит не одно устройство, а как бы два, что позволяет выполнять многие приложения одновременно. Без этой технологии каждая программа выполняется последовательно и ожидает своей очереди на ресурсы процессора. Теперь, при совершении сложных вычислений, не происходит простоя в работе программ. Оптимально данная технология может использоваться в системе Windows ХР и более новых системах.

Процессоры Pentium IV, изготовленные по 0,09 нм технологии, поддерживают новый вид команд SSE3, в которых добавлены 13 новых команд. Процессоры поставляются вместе с вентилятором и наклейкой, на которой находится номер и марка процессора. Это сделано для того, что номер и марка процессора под вентилятором не видны. Наклеив наклейку на системный блок, можно без труда определить параметры процессора.

Pentium Extreme Edition имеет двухъядерный (Dual-core) процессор, поддержку Hyper-Threading, пропускная способность шины: 1066 (4x266) Мб/с, частота процессора 3.2, 3.46, 3.73 Ггц (90 или 65 нм). Кэш второго уровня 2-4 Мб.

Xeon был представлен в 2004-6 годах. Имеет модели: Nocona, Irwindale, Cranford, Potomac, Paxville DP (2.8 ГГц), Paxville MP (двухядерный, 90 нм, частота процессора 2.67 - 3.0 ГГц), Dempsey (65 нм, частота процессора 2.67 — 3.73 ГГц, представлен в 2006 году, двухядерный, шина 667 или 1066, кэш – 4 мб), Woodcrest (65 нм, двухядерный процессор, поддержка SSE4, частоты 1.6-3.0 Ггц, кэш второго уровня 2Мб, пропускная способность шины 1066, 1333 Мб/с), Clovertown (65 нм, четырехъядерный Quad-Core процессор, SSSE3, частота процессора 1.6 – 2.66, пропускная способность шины 1066, 1333 Мб/с),

Pentium Dual-Core создан в 2006 году (32 битная архитектура) (65нм=0.065мкм) (Yonah). Пропускная способность шины 533 МГц, частота 1.60; 1.73; 1.86 Ггц. Кэш второго уровня 1-2 Мб, (Xeon LV) (Sossaman) пропускная способность шины 667 Мб/с, кэш второго уровня 2 Мб, частота 2.0 Ггц SSE3 SIMD инструкции.

Intel Core 2 имеет модели: Conroe (65 нм, представлен в 2006 году, SSE3, частота процессора 1.86 – 3.0, 2-4 Мб кэш второго уровня, пропускная способность шины 1066, 1333 Мгц), Allendale (65 нм, представлен в 2007 году, SSE3, частота процессора 1.6 – 2.6 Ггц, пропускная способность шины – 800 Мб/с, кэш второго уровня 2 Мб, Conroe XE (65 нм, представлен в 2006 году, частота процессора 2.93, 3.2 Ггц, пропускная способность шины – 1066 Мб/с, кэш второго уровня 4 Мб), Merom (для ноутбуков, 65 нм, представлен в 2006 году, частота процессора 1.06 - 2.6 Ггц, пропускная способность шины – 533 - 800 Мб/с, кэш второго уровня 2-4 Мб), Kentsfield (65 нм, четыре ядра (Quad Core), представлен в 2006 году, частота процессора 2.4 - 3.0 Ггц, пропускная способность шины – 1066 - 1333 Мб/с, кэш второго уровня 2-4 Мб), Wolfdale/Yorkfield (45 нм, SSE4.1, двух и четырехядерный, представлен в 2007-8 годах частота процессора 2.53 - 3.33 Ггц, пропускная способность шины – 1066, 1333 Мб/с, кэш второго уровня 3-12 Мб),

Pentium Dual Core имеет модели: Merom-2M (65 нм, для ноутбуков, представлен в 2006 году, частота процессора 1.46 - 1.86 Ггц, пропускная способность шины – 533 Мгц, кэш второго уровня 1 Мб), Allendale (65 нм,  представлен в 2007 году, SSE3, частота процессора 1.6 - 2.4 Ггц, пропускная способность шины – 800 Мгц, кэш второго уровня 1 Мб), Wolfdale (45 нм представлен в 2008 году, частота процессора 2.8 - 2.93 Мб/с, пропускная способность шины – 1066 Мб/с, кэш второго уровня 2 Мб).

Celeron Dual Core является упрощенным и более дешевым (как правило за счет меньшей кэш памяти) вариантом Pentium Dual Core, появился в 2006 году.

Intel Core i3 имеет шину данных – DMI и следующие модели: Clarkdale (32 нм, 2 ядра, 4 потока, частота процессора 2.93 – 3.33 Ггц, кэш второго уровня 0,5 Мб, третьего – 4 Мб), Arrandale (32 нм, для ноутбуков, 2 ядра, 4 потока, частота процессора 1.2 – 2.53 Ггц, кэш второго уровня 0,5 Мб, третьего – 3 Мб).

Intel Core i5 появился в 2009, 10 годах, поддерживает SSE3, SSSE3, SSE4.1 и SSE4.2, имеет следующие модели: Lynnfield (45 нм, 4 ядра, частота процессора 2.4 – 2.8 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Clarkdale (32 нм, 2 ядра, частота процессора 3.2 – 3.6 Ггц, кэш второго уровня 0,5 Мб, третьего – 4 Мб), Arrandale (32, для ноутбуков, 2 ядра, частота процессора 1.06 – 2.67 Ггц, кэш второго уровня 0,5 Мб, третьего – 3 Мб).

Intel Core i7 поддерживает SSE3, SSSE3, SSE4.1 и SSE4.2, существуют следующие модели: Gulftown (32 нм, представлен в 2010 году, 6 ядер, 12 потоков, частота процессора 3.2 – 3.46 Ггц, 6×256 Кбайт L2-кэш (кэш второго уровня),12 Мбайт L3 (кэш третьего уровня), Bloomfield (45 нм, 4 ядра 8 потоков, представлен в 2008 году, частота процессора 2.66 – 3.33 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Lynnfield (45 нм, 4 ядра, представлен в 2009 году, частота процессора 2.53 – 3.06 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Arrandale (32 нм, 2 ядра, 4 потока, представлен в 2010 году, для ноутбуков, частота процессора 1.06 – 2.8 Ггц, кэш второго уровня 0,5 Мб, третьего – 4 Мб).

Intel Core i7 Extreme Edition имеет следующие модели: Bloomfield (45 нм, 4 ядра, 8 потоков, частота процессора 3.2 – 3.33 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Gulftown (45 нм, 6 ядер, 12 потоков, частота процессора 3.33 – 3.46 Ггц).

В последнее время выпускаются процессоры второго поколения (все по 32 нм, поддерживают наборSSE4.1, SSE4.2, или AVG, или оба набора):

Intel Core i3 имеет шину данных – DMI и следующую модель: Sandy Bridge (32 нм, 2 ядра, 4 потока, частота процессора 2.5 – 3.4 Ггц, кэш третьего уровня – 3 Мб).

Intel Core i5 имеет шину данных – DMI и следующую модель: Sandy Bridge (32 нм, 2 ядра, 4 потока или 4 ядра, 4 потока, частота процессора 2.3 – 3.3 Ггц, кэш третьего уровня – 6 Мб).

Intel Core i7 имеет шину данных – DMI и следующую модель: Sandy Bridge (32 нм, 4 ядра, 8 потока, частота процессора 2.8 – 3.4 Ггц, кэш третьего уровня – 8 Мб).

Intel Core i7 Extreme Edition имеет следующие модели: Bloomfield (45 нм, 4 ядра, 8 потоков, частота процессора 3.2 – 3.33 Ггц, кэш второго уровня 1 Мб, третьего – 8 Мб), Gulftown (45 нм, 6 ядер, 12 потоков, частота процессора 3.33 – 3.46 Ггц).