
- •91. Раздражимость и возбудимость живых тканей. Мембранный потенциал покоя.
- •92. Мембранный потенциал действия. Биопотенциалы как носители информации живых организмов.
- •93. Механизмы мышечного сокращения: теория скольжения и электромеханического сопряжения. Энергетика мышц
- •94. Рефлекторный принцип регуляции функций в организме человека. Принципы интеграции и координации в деятельности центральной нервной системы
- •95. Многоуровневая организации регуляции функций организма человека и гормональный баланс как основа интегративной деятельности мозга и формирования целенаправленного поведения
- •96. Общая характеристика звеньев гуморальной регуляции: управление, синтез и секреция гормонов.
- •Звено синтеза и секреции гормонов
- •97. Общая характеристика звеньев гуморальной регуляции: транспорт, метаболизм и выделение гормонов.
- •98. Внутренняя среда организма. Основные филологические константы, характеризующие гомеостаз.
- •99. Уровни регуляции гомеостаза: клеточный (аутокриния), тканевой (паракриния), органный и организменный
- •100. Типы регуляции (по согласованию и по возмущению).
- •101. Центральный механизм регуляции гомеостаза. Принцип саморегуляции
- •102. Современные представления о субстрате, природе и градиенте автоматии сердца.
- •123. Уровни структурной организации белковой молекулы. Методы исследования содержания белков в биологических объектах
- •124. Ферменты. Структурная организация. Механизм действия ферментов. Ферменты как мишень действия экологических факторов
- •125. Классификация ферментов. Специфичность действия ферментов. Активаторы и ингибиторы ферментов как факторы воздействия на живой организм. Количественная характеристика действия ферментов.
- •126. Строение и функции мембран. Модели строения мембран. Рецепторы мембран как первичная мишень взаимодействия экологических факторов с живым организмом
- •127. Виды трансмембранного переноса веществ. Биохимические особенности эндоцитоза и экзоцитоза как способов взаимодействия окружающей среды с внутренним содержимым клеток.
- •130. Основные углеводы тканей человека и их биологическая роль. Переваривание, всасывание и транспорт углеводов
- •133. Транспорт липидов в плазме крови. Липопротеины как фактор контроля развития нарушений обмена липидов
- •134. Метаболизм липидов. Бета-окисление жирных кислот как источник образования энергии. Синтез холестерола и триацилглицеролов.
- •135. Аминокислоты. Классификация. Незаменимые аминокислоты как эссенциальный фактор биологической ценности пищи
- •136. Метаболизм аминокислот: трансаминирование, дезаминирование, декарбоксилирование. Роль витамина в6
- •137. Конечные продукты азотистого обмена у живых организмов. Образование аммиака в тканях человека. Токсичность аммиака. Местное и общее обезвреживание аммиака.
- •138. Гормоны. Определение. Классификации по эндокринным железам и механизмам действия. Взаимодействие гормона с рецептором. Типы рецепторов
- •139. Механизм действия гормонов не проникающих в клетки. Понятие о вторичных внутриклеточных посредниках. Характеристика адреналина, глюкагона, кортикотропина.
- •140. Механизм действия гормонов, проникающих в клетку. Экспрессия генов. Характеристика трийодтиронина, тестостерона, эстрогенов.
- •141. Механизм действия инсулина. Регуляция уровня глюкозы и гликогена. Понятие о сахарном диабете первого и второго типов.
- •143. Водорастворимые витамины. Витамины кофакторы ферментов. Примеры. Характеристика витаминов группы в, с, н
- •144. Жирорастворимые витамины. Механизмы действия витаминов а, д, е, к. Витамины-антиоксиданты в липидной фазе мембран как способ предотвращения повреждения мембран экологическими факторами.
- •145. Матричные синтезы: репликация, транскрипция, трансляция. Понятие об экспрессии генов и ее регуляции
- •146. Механизмы повреждения днк экологическими факторами на примере ультрафиолетового и ионизирующего излучений. Репаративный синтез днк как способ противодействия повреждениям днк.
- •147. Биохимические основы обезвреживания ксенобиотиков: микросомальное окисление (роль суперсемейства цитохрома р450).
- •148. Реакции конъюгации как способ повышения гидрофильности ксенобиотиков с целью выведения из организма. Основные виды конъюгации.
- •149. Генная инженерия и ее роль в биоэкологи. Возможные риски применения генномодифицированных продуктов
- •150. Понятие о технологии рекомбинантных днк. Опасность поступления в биосферу генномодифицированных организмов. Генная инженерия и биологическое разнообразие.
139. Механизм действия гормонов не проникающих в клетки. Понятие о вторичных внутриклеточных посредниках. Характеристика адреналина, глюкагона, кортикотропина.
Гормон связывается со своими специфическими рецепторами на поверхности клетки; связывание запускает серию реакций, в результате которых образуются т.н. вторые посредники, оказывающие прямое влияние на клеточный метаболизм. Такими посредниками служат обычно циклический аденозиномонофосфат (цАМФ) и/или ионы кальция; последние высвобождаются из внутриклеточных структур или поступают в клетку извне. И цАМФ, и ионы кальция используются для передачи внешнего сигнала внутрь клеток у самых разнообразных организмов на всех ступенях эволюционной лестницы. Однако некоторые мембранные рецепторы, в частности рецепторы инсулина, действуют более коротким путем: они пронизывают мембрану насквозь, и когда часть их молекулы связывает гормон на поверхности клетки, другая часть начинает функционировать как активный фермент на стороне, обращенной внутрь клетки; это и обеспечивает проявление гормонального эффекта.
Вторичные мессенджеры, или посредники, это внутриклеточные вещества, концентрация которых строго контролируется гормонами, нейромедиаторами и другими внеклеточными сигналами Такие вещества образуются из доступных субстратов и имеют короткий биохимический полупериод. Наиболее важными вторичными мессенджерами являются цАМФ (сAMP), цГТФ (cGTP),Са2+,инозит-1,4,5-трифосфат.
Адреналин — основной гормон мозгового вещества надпочечников, а также нейромедиатор. По химическому строению является катехоламином. Адреналин содержится в разных органах и тканях, в значительных количествах образуется в хромаффинной ткани, особенно в мозговом веществе надпочечников.
Адреналин оказывает стимулирующее воздействие на ЦНС, хотя и слабо проникает через гемато-энцефалический барьер. Он повышает уровень бодрствования, психическую энергию и активность, вызывает психическую мобилизацию, реакцию ориентировки и ощущение тревоги, беспокойства или напряжения. Адреналин генерируется при пограничных ситуациях.
Глюкагон — гормон альфа-клеток островков Лангерганса поджелудочной железы. По химическому строению глюкагон является пептидным гормоном. Механизм действия глюкагона обусловлен его связыванием со специфическими глюкагоновыми рецепторами клеток печени. Таким образом, глюкагон в печени, стимулируя распад гликогена, способствует поддержанию глюкозы в крови на постоянном уровне.Глюкагон также активирует глюконеогенез,липолиз и кетогенез в печени.
Кортикотропин — тропный гормон, вырабатываемыйэозинофильными клетками передней доли гипофиза. По химическому строению АКТГ является пептидным гормоном. Кортикотропин контролирует синтез и секрецию гормонов коры надпочечников. В основном кортикотропин влияет на синтез и секрецию глюкокортикоидов —кортизола, кортизона, кортикостерона. Попутно повышается синтез надпочечниками прогестерона, андрогенов и эстрогенов.
140. Механизм действия гормонов, проникающих в клетку. Экспрессия генов. Характеристика трийодтиронина, тестостерона, эстрогенов.
Действие осуществляется через цитоплазматические рецепторы – свойствен стероидным гормонам (гормонам коры надпочечников и половым), а также гормонам щитовидной железы (T3 и T4). Проникнув в клетку, содержащую соответствующий рецептор, гормон образует с ним гормон-рецепторный комплекс. Этот комплекс подвергается активации (с помощью АТФ), после чего проникает в клеточное ядро, где гормон оказывает прямое влияние на экспрессию определенных генов, стимулируя синтез специфических РНК и белков. Именно эти новообразованные белки, обычно короткоживущие, ответственны за те изменения, которые составляют физиологический эффект гормона.
Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадиипосттрансляционных модификаций белков.
Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме.
Трийодтирони́н (трииодтиронин) — биологически активная форма тиреоидных гормонов щитовидной железы. Тиреоидные гормоны стимулируют рост и развитие организма, рост и дифференцировку тканей. Повышают потребность тканей в кислороде. Повышают системноеартериальное давление, частоту и силу сердечных сокращений. Повышают уровень бодрствования, психическую энергию и активность, ускоряет течение мыслительных ассоциаций, повышает двигательную активность. Повышают температуру тела и уровень основного обмена.
Тестостеро́н (от тестикулы и стероиды) — основной мужской половой гормон, андроген. Секретируется клетками Лейдигасеменников у мужчин, а также в небольших количествах яичниками у женщин и корой надпочечников у обоих полов. Является продуктом периферического метаболизма, отвечает за вирилизацию у мальчиков и андрогенизацию у девочек. Передозировка гормональными препаратами, в частности производными тестостерона, может вызвать гиперсексуальность, а при длительном употреблении может вызвать у мужчин постоянное тяжёлое ожирение молочной железы (гинекомастия) или временное лёгкое ожирение
Эстрогены (греч. οίστρος — живость и яркость + греч. γενος — род) — общее собирательное название подкласса стероидных гормонов, производимых, в основном, фолликулярным аппаратом яичников у женщин. В небольших количествах эстрогены производятся такжеяичками у мужчин и корой надпочечников у обоих полов. Эстрогены оказывают сильное феминизирующее влияние на организм. Они стимулируют развитие матки, маточных труб, влагалища,стромы и протоков молочных желез, пигментацию в области сосков и половых органов, формирование вторичных половых признаков по женскому типу, рост и закрытие эпифизов длинных трубчатых костей.