
- •91. Раздражимость и возбудимость живых тканей. Мембранный потенциал покоя.
- •92. Мембранный потенциал действия. Биопотенциалы как носители информации живых организмов.
- •93. Механизмы мышечного сокращения: теория скольжения и электромеханического сопряжения. Энергетика мышц
- •94. Рефлекторный принцип регуляции функций в организме человека. Принципы интеграции и координации в деятельности центральной нервной системы
- •95. Многоуровневая организации регуляции функций организма человека и гормональный баланс как основа интегративной деятельности мозга и формирования целенаправленного поведения
- •96. Общая характеристика звеньев гуморальной регуляции: управление, синтез и секреция гормонов.
- •Звено синтеза и секреции гормонов
- •97. Общая характеристика звеньев гуморальной регуляции: транспорт, метаболизм и выделение гормонов.
- •98. Внутренняя среда организма. Основные филологические константы, характеризующие гомеостаз.
- •99. Уровни регуляции гомеостаза: клеточный (аутокриния), тканевой (паракриния), органный и организменный
- •100. Типы регуляции (по согласованию и по возмущению).
- •101. Центральный механизм регуляции гомеостаза. Принцип саморегуляции
- •102. Современные представления о субстрате, природе и градиенте автоматии сердца.
- •123. Уровни структурной организации белковой молекулы. Методы исследования содержания белков в биологических объектах
- •124. Ферменты. Структурная организация. Механизм действия ферментов. Ферменты как мишень действия экологических факторов
- •125. Классификация ферментов. Специфичность действия ферментов. Активаторы и ингибиторы ферментов как факторы воздействия на живой организм. Количественная характеристика действия ферментов.
- •126. Строение и функции мембран. Модели строения мембран. Рецепторы мембран как первичная мишень взаимодействия экологических факторов с живым организмом
- •127. Виды трансмембранного переноса веществ. Биохимические особенности эндоцитоза и экзоцитоза как способов взаимодействия окружающей среды с внутренним содержимым клеток.
- •130. Основные углеводы тканей человека и их биологическая роль. Переваривание, всасывание и транспорт углеводов
- •133. Транспорт липидов в плазме крови. Липопротеины как фактор контроля развития нарушений обмена липидов
- •134. Метаболизм липидов. Бета-окисление жирных кислот как источник образования энергии. Синтез холестерола и триацилглицеролов.
- •135. Аминокислоты. Классификация. Незаменимые аминокислоты как эссенциальный фактор биологической ценности пищи
- •136. Метаболизм аминокислот: трансаминирование, дезаминирование, декарбоксилирование. Роль витамина в6
- •137. Конечные продукты азотистого обмена у живых организмов. Образование аммиака в тканях человека. Токсичность аммиака. Местное и общее обезвреживание аммиака.
- •138. Гормоны. Определение. Классификации по эндокринным железам и механизмам действия. Взаимодействие гормона с рецептором. Типы рецепторов
- •139. Механизм действия гормонов не проникающих в клетки. Понятие о вторичных внутриклеточных посредниках. Характеристика адреналина, глюкагона, кортикотропина.
- •140. Механизм действия гормонов, проникающих в клетку. Экспрессия генов. Характеристика трийодтиронина, тестостерона, эстрогенов.
- •141. Механизм действия инсулина. Регуляция уровня глюкозы и гликогена. Понятие о сахарном диабете первого и второго типов.
- •143. Водорастворимые витамины. Витамины кофакторы ферментов. Примеры. Характеристика витаминов группы в, с, н
- •144. Жирорастворимые витамины. Механизмы действия витаминов а, д, е, к. Витамины-антиоксиданты в липидной фазе мембран как способ предотвращения повреждения мембран экологическими факторами.
- •145. Матричные синтезы: репликация, транскрипция, трансляция. Понятие об экспрессии генов и ее регуляции
- •146. Механизмы повреждения днк экологическими факторами на примере ультрафиолетового и ионизирующего излучений. Репаративный синтез днк как способ противодействия повреждениям днк.
- •147. Биохимические основы обезвреживания ксенобиотиков: микросомальное окисление (роль суперсемейства цитохрома р450).
- •148. Реакции конъюгации как способ повышения гидрофильности ксенобиотиков с целью выведения из организма. Основные виды конъюгации.
- •149. Генная инженерия и ее роль в биоэкологи. Возможные риски применения генномодифицированных продуктов
- •150. Понятие о технологии рекомбинантных днк. Опасность поступления в биосферу генномодифицированных организмов. Генная инженерия и биологическое разнообразие.
137. Конечные продукты азотистого обмена у живых организмов. Образование аммиака в тканях человека. Токсичность аммиака. Местное и общее обезвреживание аммиака.
Конечными продуктами распада азотсодержащих веществ являются углекислый газ, вода и аммиак, в отличие от углеводов и липидов. Источником аммиака в организме являются аминокислоты, азотистые основания, амины. Аммиак образуется в результате прямого и непрямого дезаминирования аминокислот (основной источник), гидралитического дезаминирования азотистых оснований, инактивации биогенных аминов. 2. Аммиак токсичен и его действие проявляется в нecкольких функциональных системах: а) Легко проникая через мембраны (нарушая трансмембранный перенос Na+ и К+) в митохондриях связывается с а-кетоглутаратом и другими кетокислотами (ЦТК), образуя аминокислоты; в этих процессах используются и восстановительные эквиваленты (NADН+H+). б) При высоких концентрациях аммиака глутамат и аспартат образуют амиды, используя и ATФ, нарушая все тот же ЦТК, являющийся главным энергетическим источником работы мозга. в) Накопление глутамата в мозге повышает осмотическое давление, что ведет к развитию отека. г) Повышение концентрации аммиака в крови (N - 0.4 - 0.7 мг/л) сдвигает рН в щелочную сторону, повышая сродство О2 к гемоглобину, что вызывает гипоксию нервной ткани. д) Уменьшение концентрации а-кетоглутарата вызывает угнетение обмена аминокислот (синтеза нейромедиаторов) ускорение синтеза оксалоацетата из пирувата, что связано с повышенным использованием СО2. 3. Гипераммониемия прежде всего отрицательно действует на мозг и сопровождается тошнотой, головокружением, потерей сознания, отставанием умственного развития (при хронической форме).
Основной реакцией связывания аммиака во всех клетках является синтез глутамина под действием глутаминсинтетазы в митохондриях, где используется для этой цели АТФ. Глутамин облегченной диффузией поступает в кровь и транспортируется в кишечник и почки. В кишечнике под действием глутаминазы образуется глутамат, который трансаминируется с пируватом, превращая его в аланин, поглощаемый печенью; 5% аммиака удаляется через кишечник, остальные 90% выводятся почками.
138. Гормоны. Определение. Классификации по эндокринным железам и механизмам действия. Взаимодействие гормона с рецептором. Типы рецепторов
Гормоны- в-ва органической природы, которые 1) вырабатывабтся в специализированных клетках желез внутренней секреции, 2) поступают в кровь или лимфу и 3) взаимодействуют с клетками-мишенями, оказывая влияние на обмен в-в и физиологические ф-и. Гормоны классифицируются в зав-ти от места их природного синтеза- гормоны гипоталамуса, гипофиза, щитовидной железы, надпочечников, поджелудочной железы, половых желез и др. Гормоны могут быть классиф-ны по месту синтеза и месту действия на 3 гр: 1) эндокринные-синтезир-ся эндокринными железами и транспортир-ся кровью к кл-м-мишеням; 2) паракринные- синтезируются в близи места их действия; 3) аутокринные-действ-т на те же кл-ки, кот. их синтезируют.По химич-й структуре выд-т пептиды и белки, производные аминок-т, стероидные гомоны, производные жирных к-т, газы. По растворимости: гидрофильные и липофильные. По мех-му действия: гормоны, не проникающие в клетку; гормоны, проникающие в клетку; гормоны смешанного действия. Мех-м действия гормонов: липофильные гормоны диффундируют через плазматическую мембрану и связываются со специфическими рецепторами, расположенными в цитозоле или ядре клеток. В рез-те этой р-и, зависящей от температуры и присутствия солей, меняются величина, конформация и поверхностный заряд гормон-рецепторного комплекса, и он приобретает возможность связываться с хроматином. Гормон- рецепторный комплекс связывается со специфической областью ДНК- гормон- чувствительным элементом и активирует или инактивирует специфические гены. Гормон избирательно влияет на транскрипцию генов и продукцию соответствующих мРНК , изменяет через экспрессию генов количество специфических белков и ,как следствие, скорость метаболических процессов.
Две обширные группы: 1) мембранные или поверхностные и 2) внутриклеточные рецепторы. Мембранные рецепторы располагаются в плазматической мембране клетки-мишени и взаимодействуют с белково-пептидными гормонами и катехоламинами. Как видно из их названия, внутриклеточные рецепторы находятся внутри клетки и взаимодействуют со стероидными и тиреоидными гормонами, которые представляют собой небольшие липофильные молекулы, с легкостью проникающие в клетку через плазматическую мембрану.