
- •2.4. Как изменяется бюджетная линия
- •2.5. Измеритель
- •2.6. Налоги, субсидии и рационирование
- •3.1. Потребительские предпочтения
- •3.2. Предположения относительно предпочтений
- •3.3. Кривые безразличия
- •3.4. Примеры предпочтений
- •3.5. Стандартные предпочтения
- •3.6. Предельная норма замещения
- •4.3. Некоторые примеры функций полезности
- •4.4. Предельная полезность
- •4.5. Предельная полезность и mrs
- •5.1. Оптимальный выбор
- •5.2. Потребительский спрос
- •5.3. Некоторые примеры
- •5.5. Смысл условия оптимума потребителя, связанного с mrs
- •5.6. Выбор налогов
- •6.1. Нормальные товары и товары низшей категории
- •6.2. Кривые "доход — потребление" и кривые Энгеля
- •6.3. Некоторые примеры
- •6.4. Обычные товары и товары Гиффена
- •6.5 Кривая "цена — потребление" и кривая спроса
- •6.6. Некоторые примеры
- •6.7. Субституты и комплементы
- •6.8. Обратная функция спроса
- •Уравнение слуцкого. Эффект замещения и эффект дохода. Абсолютное и относительное изменения спроса. Закон спроса. Компенсированная кривая спроса.
- •8.1. Эффект замещения
- •8.2. Эффект дохода
- •8.6. Закон спроса
- •8.9 Кривые компенсированного спроса
- •10.1 Бюджетное ограничение
- •10.2 Предпочтения в отношении потребления
- •10.3 Сравнительная статика
- •10.4 Уравнение Слуцкого и межвременной выбор
- •12.5 Нерасположенность к риску
- •12.7 Рассредоточение риска
- •14.1 Спрос на дискретный товар
- •14.2 Построение функции полезности на основе функции спроса
- •14.3 Другие интерпретации излишка потребителя
- •14.4 От излишка потребителя к излишку потребителей
- •14.7 Интерпретация изменения излишка потребителя
- •14.8 Компенсирующая и эквивалентная вариации дохода
- •15.1. От индивидуального спроса к рыночному
- •15.2. Обратная функция спроса
- •15.3. Дискретные товары
- •15.4. Экстенсивный и интенсивный пределы корректировки спроса
- •15.5. Эластичность
- •15.6. Эластичность и спрос
- •15.7. Эластичность и общий доход
- •15.8. Кривые спроса с постоянной эластичностью
- •15.9. Эластичность и предельный доход
- •Равновесие. Предложение. Рыночное равновесие. Обратные кривые спроса и предложения. Налоги и субсидии, их влияние на эффективность (социальные издержки). Парето эффективность.
- •Технология. Затраты и выпуск. Технологическое ограничение. Предельный продукт. Техническая норма замещения. Производственные планы, доступные в коротком и долгом периодах. Отдача от масштаба.
- •17.1 Ресурсы и выпуск
- •17.2. Описание технологических ограничений
- •17.3. Примеры технологии
- •17.5. Предельный продукт
- •17.6. Технологическая норма замещения
- •17.9. Короткий и длительный периоды
- •17.10. Отдача от масштаба
- •19.2. Выявленная минимизация издержек
- •19.3. Отдача от масштаба и функция издержек
- •19.4. Долгосрочные и краткосрочные издержки
- •19.5. Постоянные и квазипостоянные издержки
- •19.6. Невозвратные издержки
- •Предложение фирмы. Чистая конкуренция и фирма-ценополучатель. Рыночная среда. Обратная кривая предложения. Прибыль и излишек производителя. Предложение в долгом периоде.
- •Монополия. Максимизация прибыли фирмой-ценоискателем. Социальные издержки монополии, ее неэффективность. Естественная монополия. Проблема минимального эффективного масштаба производства.
- •23.1. Максимизация прибыли
- •23.4. Неэффективность монополии
- •23.6. Естественная монополия
- •23.7. Что порождает монополии?
5.1. Оптимальный выбор
Типичный случай оптимального выбора показан на рис. 5.1. Здесь на одном и том же графике изображены бюджетное множество и несколько кривых безразличия. Мы хотим найти тот набор из данного бюджетного множества, который находится на самой высокой кривой безразличия. Поскольку предпочтения стандартны, так что б?льшее предпочитается меньшему, можно ограничиться рассмотрением наборов, лежащих на бюджетной линии, не заботясь о тех наборах, которые находятся под ней.
Будем
двигаться влево из исходного положения
в правом углу бюджетной линии. По мере
движения вдоль бюджетной линии мы
замечаем, что переходим на все более и
более высокие кривые безразличия. Мы
остановимся, когда попадем на самую
высокую кривую безразличия, которая
лишь касается бюджетной линии. На
рассматриваемом графике товарный набор,
связываемый с самой высокой кривой
безразличия, лишь касающейся бюджетной
линии, обозначен (
,
).
Выбор ( , ) является оптимальным выбором для потребителя. Множество наборов, которые он предпочитает ( , ), а именно, множество наборов, располагающееся над его кривой безразличия, не пересекает наборы, которые он может себе позволить приобрести, а именно, наборы подбюджетной линией. Таким образом, набор ( , ) — это наилучший набор, который потребителю по карману.
Рис. 5.1 |
Оптимальный выбор. Оптимальное потребление приходится на точку, в которой кривая безразличия касается бюджетной линии. |
|
Обратите внимание на важное свойство этого оптимального набора: при данном выборе кривая безразличия касается бюджетной линии. Если призадуматься, так и должно быть: если бы кривая безразличия не касалась бюджетной линии, то она бы ее пересекала, а если бы она пересекала бюджетную линию, то существовала бы некая близлежащая точка на бюджетной линии, находящаяся выше кривой безразличия, а это означает, что наш исходный набор не мог быть оптимальным.
Должно ли это условие касания непременно соблюдаться в точке оптимального выбора? Оно, скажем так, соблюдается не во всех случаях, но в наиболее интересных случаях соблюдается. Что верно всегда, так это то, что в точке оптимального выбора кривая безразличия не может пересекать бюджетную линию. Так когда же "непересечение" подразумевает касание? Вначале рассмотрим исключения.
Во-первых, бывают случаи, когда к кривой безразличия невозможно провести касательную, как на рис.5.2. Здесь кривая безразличия имеет излом в точке оптимального выбора, так что касательная просто неопределима, поскольку математическое определение касательной требует существования единственной касательной в каждой точке. Этот случай не имеет большого экономического значения, скорее, он доставляет неудобства.
|
Ломаные предпочтения. Здесь оптимальный потребительский набор находится в точке, в которой к кривой безразличия нельзя провести касательную. |
Рис. 5.2 |
Второе исключение представляет больший интерес. Предположим, что в точке оптимума потребление какого-либо товара равно нулю, как на рис.5.3. Тогда наклоны кривой безразличия и бюджетной линии различны, однако кривая безразличия по-прежнему не пересекает бюджетной линии. Мы говорим, что на рис.5.3 представлен краевой оптимум, в то время как на рис.5.1 — внутренний оптимум.
Если исключить из рассмотрения "ломаные предпочтения", о примере, приведенном на рис.5.2, можно забыть. Если же мы хотим ограничиться рассмотрением лишь внутренних оптимумов, можно не рассматривать и второй пример. В случае внутреннего оптимума с плавно убывающими кривыми безразличия наклон кривой безразличия и наклон бюджетной линии должны быть одинаковы...потому что если бы они различались, кривая безразличия пересекла бы бюджетную линию, и мы не могли бы находиться в оптимальной точке.
Рис. 5.3 |
Краевой оптимум. Оптимальное потребление предполагает нулевое потребление товара 2. Бюджетная линия не является касательной к кривой безразличия. |
|
Мы нашли необходимое условие, которому должен удовлетворять оптимальный потребительский выбор. Если оптимальный выбор предполагает потребление некоторого количества обоих товаров, т. е. речь идет о внутреннем оптимуме, то бюджетная линия с необходимостью будет выступать касательной к кривой безразличия. Но является ли соблюдение условия касания достаточным для того, чтобы набор был оптимальным? Можем ли мы быть уверены в том, что любой набор, находящийся в точке касания кривой безразличия и бюджетной линии, характеризует оптимальный потребительский выбор?
Взгляните на рис.5.4. В изображенном на нем случае имеются три набора, удовлетворяющих условию касания, и все три касания — внутренние, но лишь два из указанных наборов оптимальны. Следовательно, вообще говоря, условие касания — лишь необходимое условие оптимальности, но не достаточное.
Имеется, однако, один важный случай, в котором это условие выступает достаточным: речь идет о предпочтениях, представленных кривыми безразличия, выпуклыми к началу координат. В случае таких предпочтений любая точка, удовлетворяющая условию касания, должна быть точкой оптимума. Геометрически это очевидно: поскольку кривые безразличия, выпуклые к началу координат, должны изгибаться по направлению от бюджетной линии, они не могут отклониться назад, чтобы вновь ее коснуться.
|
Случай более чем одного касания. Налицо три касания, но лишь две точки оптимума, так что условие касания является необходимым, но не достаточным. |
Рис. 5.4 |
Рис.5.4 показывает также, что, вообще говоря, может иметься более одного оптимального набора, удовлетворяющего условию касания. Однако выпуклость кривых безразличия к началу координат и здесь накладывает ограничение. Если кривые безразличия строго выпуклы к началу координат — не имеют никаких прямых участков, то на каждой бюджетной линии будет находиться лишь одна точка оптимального выбора. Хотя это можно показать математически, это представляется вполне правдоподобным и при взгляде на рисунок.
Условие равенства MRS наклону бюджетной линии в точке внутреннего оптимума графически очевидно, но каков его экономический смысл? Вспомним одну из приведенных выше интерпретаций MRS — трактовку ее как нормы обмена, при которой потребитель хочет остаться в данной точке. Рынком потребителю предлагается норма обмена, равная –p1/p2: отказавшись от одной единицы товара 1, вы можете купить p1/p2 единиц товара 2. Если потребитель хочет остаться в точке, соответствующей данному потребительскому набору, то это должна быть точка, в которой MRS равна указанной норме обмена
MRS
= –
.
Можно рассуждать и по-другому: представить себе, что произошло бы, если бы MRS отличалась от отношения цен. Предположим, например, что MRS есть x2/x1 = —1/2, отношение цен составляет 1/1. Это означает, что потребитель готов отказаться от двух единиц товара 1, чтобы получить взамен одну единицу товара 2, однако на рынке эти товары можно обменять только в соотношении "один к одному". Таким образом, потребитель был бы, конечно, готов отказаться от некоторого количества товара 1, чтобы приобрести несколько больше товара 2. Во всех случаях, когда MRS отличается по величине от отношения цен, потребитель не может находиться в точке своего оптимального выбора.