
- •Понятие, предмет, методы, этапы экономико-математического моделирования.
- •Понятие экономико-математических моделей и их типы.
- •Этапы построения экономико-математических моделей.
- •15,Классификация экономико-математических моделей.
- •Виды систем моделей.
- •Понятие «информация» и её использование в моделировании
- •Информационные модели: понятие, сущность.
- •Понятие линейного программирования.
- •Метод графического решения задач линейного программирования.
- •Симплекс-метод линейного программирования.
- •Нелинейные методы программирования.
- •Понятие оптимальности в экономико-математическом моделировании.
- •Критерии в экономико-математическом моделировании.
- •Экономические свойства оптимальности.
- •Классификация экономико-математических моделей.(4)
- •Статистические ряды распределения.
- •Статистическая сводка, её организация и техника.
- •Сущность и виды группировок.
- •Статистические таблицы.
- •Абсолютные величины, их виды и значение.
- •Виды абсолютных величин:
- •Формы учета абсолютных величин:
- •Понятие относительных величин, виды и способы их расчёта.
- •Виды относительных величин
- •Сущность и значение средних величин.
- •Виды средних величин и способы их расчёта.
- •Средняя арифметическая (простая и взвешенная)
- •Свойства средней арифметической
- •Средняя гармоническая
- •Показатели вариации и способы их расчёта.
- •Виды дисперсий и правила их сложения.
- •Правило сложения дисперсий
- •Понятие о рядах динамики, сопоставимость статистических величин в рядах динамики.
- •Показатели динамического ряда, методика их расчёта.
- •Средние показатели ряда динамики.
- •Методы выявления тенденций в динамических рядах.
- •Индивидуальные и общие индексы.
- •Формы индексов. Агрегатные индексы и их веса.
- •Средние индексы.
- •Система взаимосвязанных индексов. Факторный анализ.
- •Индексы средних величин. Индексы переменного и постоянного состава.
- •Понятие корреляционного анализа.
- •Виды корреляционной связи.
- •Статистическое измерение корреляционной взаимосвязи.
- •Организация процесса построения пространственных моделей.
- •Спецификация моделей.
- •Метод наименьших квадратов (мнк).
- •Фиктивные переменные.
- •Предпосылки метода наименьших квадратов.
Показатели динамического ряда, методика их расчёта.
Для углубленного изучения процессов во времени рассчитывают показатели динамического ряда.
Для характеристики скорости изменения процесса применяются такие показатели, как абсолютный прирост (убыль), темп прироста (убыли).
Абсолютный прирост (убыль) характеризует скорость изменения процесса (абсолютную величину прироста (убыли) в единицу времени). Абсолютный прирост рассчитывается как разность между данным уровнем и предыдущим; обозначается знаком "+", характеризуя прирост, или знаком "—", характеризуя убыль.
Темп прироста (убыли) характеризует величину прироста (убыли) в относительных показателях в % и определяется как процентное отношение абсолютного прироста (убыли) к предыдущему уровню ряда; обозначается знаком "+" (прирост) или знаком "—" (убыль).
Для характеристики изменения процесса одного периода по отношению к предыдущему периоду применяется такой показатель, как темп роста (снижения); рассчитывается как процентное отношение последующего (уровня) к предыдущему.
При сравнении динамических рядов с разными исходными уровнями (например, средними, интенсивными, абсолютными) используется показатель — значение 1% прироста (убыли); рассчитывается как отношение абсолютного прироста к темпу прироста за каждый период.
Для обобщенной количественной оценки тенденций динамического ряда используется показатель, именуемый средним темпом прироста (снижения), выраженный в %. При его расчете для большинства рядов можно использовать следующую формулу:
где К = 1 при нечетном числе уровней ряда; К = 2 при четном числе уровней ряда; а и в — показатели линейной зависимости, используемые при выравнивании ряда методом наименьших квадратов.
Средние показатели ряда динамики.
Для получения обобщающих показателей динамики социально -- экономических явлений определяются средние величины: средний уровень, средний абсолютный прирост, средний темп роста и прироста и пр.
Средний уровень ряда динамики характеризует типическую величину абсолютных уровней.
Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики. Для определения среднего абсолютного прироста сумма цепных абсолютных приростов делится на их число n. Средний абсолютный прирост может определяться по абсолютным уровням ряда динамики. Для этого определяется разность между конечным и базисным уровнями изучаемого периода, которая делится на m – 1 субпериодов.
Методы выявления тенденций в динамических рядах.
Выявление основной тенденции динамического ряда – это важный аспект анализа динамических рядов. Для этого используют следующие методы.
1. Метод укрупнения интервалов и расчет средних для каждого укрупненного интервала.
Сущность метода: исходный ряд динамики преобразуется и заменяется другими, состоящими из других уровней, относящихся к укрупненным периодам или моментам времени. При этом уровни ряда за укрупненные периоды или моменты времени могут представлять собой суммарные либо средние показатели. В любом случае рассчитанные таким образом уровни ряда более отчетливо выявляют тенденции, поскольку при суммировании или определении средних взаимопогашаются и уравновешиваются сезонные и случайные колебания.
2. Метод скользящей средней.
Скользящая средняя – это динамическая средняя. Последовательно рассчитанная при передвижении на один интервал при заданной продолжительности периода.
При четных периодах скользящей средней необходимо центрировать данные, то есть определять среднюю из найденных средних.
Первую рассчитанную центрированную относят ко второму периоду, вторую – к третьему и т.д.
Сглаженный ряд по сравнению с фактическим становится на (m –1) / 2 короче, глее m – число уровней интервала.
3. Аналитическое выравнивание.
Метод аналитического выравнивания – это выравнивание по аналитически формулам, позволяющее получить описание главной лини развития ряда. Суть метода: эмпирические уровни заменяются уровнями, рассчитанными на основе определенной кривой, уравнение которой рассматривается как функция времени.
Вид уравнения зависит от конкретного характера динамики развития.
4. Задача аналитического выравнивания состоит также в определении недостающих значений как внутри периода, так и за его пределами.
Экстраполяция – способ определения количественных значений за пределами ряда. Экстраполирование используется для прогнозирования факторов, способных влиять на развитие явления в будущем. Экстраполировать можно по средней арифметической, среднему абсолютному приросту, среднему темпу роста.
Автокорреляцию, то есть зависимость между соседними членами динамического ряда, также применяют при аналитическом выравнивании. Автокорреляцию устанавливают с помощью уровня на одну дату.
5. Анализ рядов динамики предполагает также исследование сезонной неравномерности, под которой понимают устойчивые внутригодовые колебания, причиной которых служат многочисленные факторы (в том числе природно-климатические). Сезонные колебания измеряются с помощью индексов сезонности. При относительно неизменном годовом уровне явления индекс сезонности рассчитывается как процентное отношение средней величины из фактических уровней одноименных месяцев к общему среднему уровню за исследуемый период
_
Классификация и компонентный анализ рядов динамики
Методология регрессионного анализа тенденции временного ряда
Моделирование сезонных и циклических колебаний временного ряда
Методы измерения устойчивости тенденций динамики
Моделирование тенденции ряда динамики при наличии структурных изменений
Регрессионный анализ связных динамических рядов
Индексы. Классификация индексов.
В статистике под индексом понимается относительный показатель, который выражает соотношение величин какого-либо явления во времени, в пространстве или сравнение фактических данных с любым эталоном (план, прогноз, норматив и т.д.).
В международной практике индексы принято обозначать символами i и I. Буквой “i” обозначаются индивидуальные (частные) индексы, буквой “I” - общие индексы. Знак внизу справа означает период: 0 - базисный; 1 - отчетный.
Все экономические индексы можно классифицировать по следующим показателям:
степень охвата явления;
база сравнения;
вид весов (соизмерителя);
форма построения;
характер объекта исследования;
объект исследования;
состав явления;
период исчисления.
По степени охвата явления индексы бывают индивидуальные и сводные. Индивидуальные индексы служат для характеристики изменения отдельных элементов сложного явления. Их примером могут быть изменения объема производства отдельных видов продукции (телевизоров, электроэнергии и т.д.), а также цен на акции какого-либо предприятия. Для измерения динамики сложного явления, составные части которого непосредственно рассчитывают сводные, или общие, индексы.
Если индексы охватывают не все элементы сложного явления, а только часть их, то такие индексы называются групповыми или субиндексами, например индексы физического объема продукции по отдельным отраслям промышленности, индексы цен по группам продовольственных и непродовольственных товаров. Групповые индексы отражают закономерности в развитии отдельных частей изучаемых явлений. В таких индексах проявляется их связь методом группировок.
По базе сравнения все индексы можно разделить на две группы: динамические и территориальные. Первая группа индексов отражает изменение явления во времени. При исчислении динамических индексов происходит сравнение значения показателя в отчетный период со значением этого же показателя за предыдущий период, который называют базисным. Однако в качестве последнего могут быть использованы и прогнозные и плановые показатели.
Динамические индексы бывают базисные и цепные.
Вторая группа индексов (территориальные) применяется для межрегиональных сравнений. Большое значение эти индексы имеют в международной статистике при сопоставлении показателей социально-экономического развития различных стран. Например, индекс цен на фототовары в Италии по сравнению с Германией, индекс стоимости потребительской корзины в Москве по сравнению с Санкт-Петербургом.
По виду весов индексы бывают с постоянными и переменными весами.
В зависимости от формы построения различаются индексы агрегатные и средние. Последние делятся на арифметические и гармонические. Агрегатная форма общих индексов является основной формой экономических индексов.
По характеру объема исследования общие индексы подразделяются на индексы количественных (объемных) и качественных показателей. В основе такого деления индексов лежит вид индексируемой величины. К первой группе индексов относятся, например, индексы объема продаж долларов США на Московской межбанковской валютной бирже, а ко второй-индекс курса немецкой марки.
По объекту исследования индексы бывают: производительности труда, себестоимости, физического объема продукции, стоимости продукции и т.д.
По составу явления можно выделить две группы индексов: постоянного (фиксированного) состава и переменного состава. Деление индексов на эти две группы используется для анализа динамики средних показателей.
По периоду исчисления индексы подразделяются на годовые, квартальные, месячные, недельные.