
- •Оглавление
- •Тематический обзор*
- •1.1 Специфика и системность живого
- •1.2 Основные свойства живых систем
- •1.3 Уровни организации живых систем
- •2 Принципы воспроизводства живых систем
- •3 Основы генетики
- •3.1 Генетика о наследственности
- •3.2 Генетика об изменчивости
- •4 Клеточное строение живых организмов
- •4.1 Становление клеточной теории
- •4.2 Строение и размножение клеток
- •4.3 Типы клеток и организмов
- •5 Происхождение и сущность жизни
- •5.1 История проблемы происхождения жизни и основные гипотезы происхождения жизни
- •6 Теория эволюции органического мира
- •6.1 Становление идеи развития в биологии
- •6.2 Концепция развития ж.Б. Ламарка
- •6.3 Теория катастроф ж. Кювье
- •6.4 Эволюционная теория ч. Дарвина
- •6.5 Комплекс доказательств теории эволюции
- •6.6 Синтетическая теория эволюции (стэ)
- •Основные положения стэ. Сегодня биологами накоплено достаточно материалов, которые можно систематизировать в виде основных положений стэ.
- •6.7 Формы естественного отбора
- •7 Экосистемы
- •7.1 Определение и понятие экосистемы
- •7.2 Виды экосистем
- •7.3 Экологические факторы
- •7.4 Экологическая ниша
- •7.5 Трофические цепи и сети
- •7.6 Круговорот вещества в экосистеме
- •7.7 Устойчивость экосистем
- •7.8 Энергетика и продуктивность экосистем
- •8 Биосфера
- •8.1 Основные понятия и определения
- •8.2 Общая характеристика биосферы
- •8.3 Этапы эволюции биосферы
- •8.4 Строение биосферы
- •9 Человек в биосфере
- •9.1 Антропогенез
- •9.2 Сущность человека
- •9.3 Человек и природа на пути к ноосфере
- •9.4 Современный экологический кризис и его специфика
- •9.5 Охрана окружающей среды в современном мире
- •10.1 Принцип симметрии. Понятие симметрии в современной науке
- •10.2 Принцип дополнительности
- •10.3 Принцип неопределенности в. Гейзенберга
- •10.4 Принцип суперпозиции
- •10.5 Принцип соответствия
- •11.1 Проблема соотношения динамических и статистических законов
- •12 Принцип возрастания энтропии
- •12.1 Формы энергии
- •12.2 Источники энергии
- •12.3 Первый закон термодинамики
- •12.4 Второй закон термодинамики
- •12.5 Энтропия открытой системы. Термодинамика жизни
- •13 Закономерности самоорганизации. Принципы универсального эволюционизма
- •13.1 От моделирования простых систем к моделированию сложных
- •13.2 Характеристики самоорганизующихся систем
- •13.3 Глобальный эволюционизм
- •13.4 На пути к постнеклассической науке XXI века
- •Концепции современного естествознания (курс 2) юнита 3
7.6 Круговорот вещества в экосистеме
Общее понятие о круговоротах веществ в биосфере. Под круговоротом веществ понимают многократное участие химических веществ в процессах, происходящих в атмосфере, гидросфере и литосфере, в том числе в тех частях геосфер Земли, которые включены в биосферу планеты. При этом рассматривают геологический, биологический (биотический), биогеохимический круговоро-ты, а также круговороты отдельных веществ, например, воды и отдельных химических элементов, в частности, биогенных элементов – углерода, водорода, кислорода, азота, серы, фосфора и др., имеющих важное значение для функционирования биосферы. С точки зрения процессов, проте-кающих в экосистемах, наибольший интерес для изучения в рамках нашей дисциплины представ-ляет биогеохимический круговорот вещества.
Круговорот энергии в экосистемах. В экологической литературе, наряду с круговоротами вещества, часто рассматриваются круговороты энергии в экосистемах, причем авторы некоторых публикаций, в том числе и учебной литературы, отождествляют круговороты вещества и энергии. Такое представление основывается на том, что движение органического вещества по цепям питания сопровождается направленной передачей биохимической энергии. Однако о круговороте энергии говорить нельзя, поскольку она практически не возвращается от редуцентов к продуцен-там. Действительно, как показывают экологические оценки, коэффициент круговорота энергии в экосистемах не превышает 0,25 %. Поэтому в дальнейшем мы будем рассматривать только круго-вороты веществ в экосистемах.
Круговорот веществ – условие существования жизни. Он возник в процессе становления жизни и усложнялся в ходе эволюции живой природы. Чтобы круговорот веществ в экосистеме был возможен, необходимо наличие в ней организмов-продуцентов, создающих органические вещества из неорганических и преобразующие энергию излучения Солнца, а также организмов, которые используют эти органические вещества и превращают их в неорганические соединения. Но в любом биогеоценозе очень скоро иссякли бы все запасы неорганических соединений, если бы они не возобновлялись в процессе жизнедеятельности организмов. В результате дыхания, разло-жения трупов животных и растительных остатков органические вещества превращаются в неорга-нические соединения, которые возвращаются снова в природную среду и могут опять исполь-зоваться автотрофами.
Таким образом, в биогеоценозе в результате жизнедеятельности организмов непрерывно осуществляется поток атомов из неживой природы в живую и обратно, замыкаясь в круговорот. Для круговорота веществ необходим приток энергии извне. Источником внешней энергии явл-яется Солнце. Движение вещества, вызываемое деятельностью организмов, происходит, как пока-зано ранее, циклически, в то время как поток энергии в этом процессе имеет однонаправленный характер. Из всего сказанного ясно, что круговорот веществ в биогеоценозе – необходимое условие существования жизни.
Биогеохимические циклы. Круговорот веществ – это обмен химическими элементами между живыми организмами и неорганической средой, различные стадии которого происходят внутри экосистемы. Осуществление круговорота веществ и высвобождение запасенной в органическом веществе энергии – важная функция трофических цепей в экосистеме. Если трофическую цепь дополнить редуцентами, превращающими органическое вещество в минеральные неорганические соединения, потребляемые продуцентами в процессе образования органического вещества, то полу-чим замкнутую цепь, по которой происходит направленное циклическое движение химических веществ, т.е. круговорот веществ. Такие круговороты называются биогеохимическими круговоро-тами, или биогеохимическими циклами.
Следовательно, биогеохимические циклы – круговороты питательных веществ, участниками которых являются как живые, так и неживые компоненты экосистемы. Термин биогеохимические циклы был предложен В.И. Вернадским для обозначения замкнутых (в большей или меньшей степени) путей циркулирования в биосфере химических веществ и элементов, которые сначала поглощаются живым веществом, заряжаясь биохимической энергией, и затем покидают живое вещество, отдавая накопленную энергию, с многократным циклическим повторением этих процессов. Движение химических элементов по замкнутым циклам является результатом эколого-физиологической взаимосвязи автотрофов и гетеротрофов по цепям питания. Различные виды организмов непрерывно ищут и поглощают в виде пищи вещества, необходимые им для роста, поддержания жизни и воспроизводства вида.
Заметим, что несмотря на то что из всех водных компонентов биосферы атмосферная влага содержит наименьшую массу воды (ее объем втрое меньше объема поверхностных вод суши и в 150 тысяч раз меньше объема Мирового океана), она имеет наибольшее значение для осуществле-ния биогеохимических циклов, являясь источником осадков и вовлекая в круговорот химические вещества, в том числе и вредные для природных экосистем загрязнители.