
- •1. Инженерлік графика нені зерттейді және оның негізгі мақсаттары
- •2. Монж әдісі ,Проекциялық жазықтықтар
- •3. Ортогональді проекциялау Сандық өлшеулері бар проекциялар
- •4. Октанттар. Екі проекциялық жазықтықтағы нүктенің ортогональді проекциясы
- •5. Позициялық және метрикалық есептер
- •4.1.1 Нүкте мен түзу сызықтың өзара орналасулары
- •4.1.2 Түзу сызықтардың өзара орналасулары
- •4.1.3 Екі жазықтықтың өзара орналасуы
- •4.1.4 Түзу мен жазықтықтың өзара орналасулары
- •4.2 Метрикалық есептер
- •4.2.1 Түзу сызықтың нақты шамасы мен жазықтыққа жасайтын бұрышы
- •7.Түзусызық. Түзусызықтың графикалық берілу әдісі. Проекция жазықтығына қатысты түзу сызықтың орналасуы
- •1. Параллель түзулер .
- •2. Қиылысатын түзулер.
- •12. Екі түзудің өзара орналасуы
- •13. Ортогональды проекцияларды түрлендірулердің әдістері
- •14 Ортогональды проекцияларды түрлендірулердің әдістері
- •14.Проекциялар жазықтығына препендикуляр өс бойынша айналдыру әдісі
- •15.Ортогональды проекцияларды түрлендірулердің әдістері
- •17. Нүкте мен түзудің өзара орналасуы
- •18. Түзу сызықты кесіндіні берілген қатынасқа бөлу
- •19. Орталық проекциялау
- •20. Нүкте үш проекция жазықтықтарының ортогональды жүйесінде
- •21. Ортогоналдық проекцияларды түрлендіру әдістері.Проекция жазықтықтығына параллел өсі бойынша айналдыру әдісі
- •21.Проекциялар жазықтығына параллель өс бойынша
- •23 Жазықтық. Жазықтықтың графикалық берілу әдістері
- •24 Проекция жазықтығына қатысты жазықтықтың әртүрлі орналасуы
- •25. Жазықтықтың ізі
- •26. Жазықтыққа перпендикуляр түзу сызық
- •27. Нүкте мен жазықтықтың өзара орналасуы
- •28. Түзу мен жазықтықтың өзара орналасулары
- •29. Екі жазықтықтың өзара орналасуы.
- •30. Түзудің іздері.
- •31. Жазықтыққа перпендикуляр туралы теорема
- •32. Параллель проекциялау əдісі
- •32 Паралель проекция.
- •33.Түзудің жазықтыққа қатысты орналасуы
- •34. Проекция жазықтығына байланысты жазықтықтың әр түрлі болып орналасуы
- •36. Жазықтықтардың негізгі әдістері
- •37.Көпжақтылар
- •38. Көпжақтылар мен жазықтықтардың қиылысуы.
- •39. Түзудің көпжақтылармен қиылысуы
- •40. Көпжақты беттердің өзара қиылысуы
5. Позициялық және метрикалық есептер
Позициялық (тұрғылықты) жəне метрикалық (өлшем) есептер жалпы сызба геометрияның негізгі есептері болып табылады. Позициялық (тұрғылықты) есептер дегеніміз - геометриялық фигуралардың сызбалары арқылы олардың кеңістіктегі өзара орналасуын анықтайтын есептер. Позициялық есептерге: нүкте мен түзудің, түзу мен түзудің, нүкте мен жазықтықтың, түзу мен жазықтықтың, жазықтық пен жазықтықтықтың, жазықтық пен беттің, екі беттің өзара орналасу есептері жатады. Метрикалық (өлшем) есептер дегеніміз - геометриялық фигуралардың сызбалары арқылы олардың кеңістіктегі өзара қашықтықтарын, олардың арасындағы бұрышын жəне олардың ауданын, нақты шамасын т.с.с. жағдайын анықтайтын есептер.
4.1 Позициялық есептер
Күрделі емес позициялық есептерді шешуде көбінесе жалпы əдістер пайдаланылады. Бұл параграфта кеңістіктегі нүкте мен түзу сызықтың өзара орналасуы, кеңістіктегі түзу сызықтардың өзара орналасуы, кеңістіктегі екі жазықтықтың өзара орналасуы жəне кеңістіктегі түзу мен жазықтықтың өзара орналасулары сияқты позициялық есептерді қарастырамыз.
4.1.1 Нүкте мен түзу сызықтың өзара орналасулары
Кеңістікте нүкте мен түзу сызық əртүрлі жағдайда кездесуі мүмкін. Кеңіс- тікте нүкте түзу сызық бойында немесе түзу сызықтан тыс орналасуы мүмкін. Осы тақырыпқа мысал ретінде 36-суреттегі нүктелер мен түзудің өзара орналасуларын қарастырайық. 36-суреттегі С5 нүктесі – А5В2 түзу сызығынан тыс жатқан нүкте. Ал, D3 нүктесі – А5В2 түзу сызығының бойында жатқан нүкте, өйткені бұл нүкте түзу сызықтың ен аралыққа бөлгендегі үшінші бөлігіне тең.
4.1.2 Түзу сызықтардың өзара орналасулары
Түзу сызықтар кеңістікте өзара орналасуларына байланысты: параллель, қиылысқан, айқасқан жəне перпендикуляр (тікше) болып келеді. Егер кеңістіктегі екі түзу сызықтың көлд енең П0 проекция жазықтығындағы кескіндерінің кескін табандары өзара параллель, ен аралықтары тең жəне сан- дық белгілері бір бағытта өсетін болса, онда мұндай түзу сызықтарды өзара парал лель түзулер дейді.
4.1.3 Екі жазықтықтың өзара орналасуы
Жазықтықтар да түзу сызықтар сияқты өзара параллель жəне қиылысқан болып келеді. Егер кеңістікте орналасқан екі жазықтықтардың көлбеу масштабы арқылы берілген проекциялары өзара параллель, ен аралықтары тең жəне сандық белгілері бір бағытта өссе (немесе төмендесе), онда мұндай жазықтықтарды өзара параллель жазықтықтар деп атайды.
4.1.4 Түзу мен жазықтықтың өзара орналасулары
Кеңістікте түзу сызықтар жазықтыққа параллель, меншікті (жазықтық бойында жатады) жəне перпендикуляр (тікше) қиылысады. Енді осы жағдайларға мысал қарастырамыз. Егер түзудің екі нүктесі жазықтық бойында жатса, онда мұндай түзу сызық жазықтыққа меншікті болады. Мысал қарастырайық. 44-суретте Р жазықтығының көлбеу масштабы арқылы берілген кескіні көрсетілген. Түзудің А жəне В нүктелері осы жазықтықтың аттас горизонтальдарының бойында жатыр, яғни АВ түзу сызығы Р жазықтығына меншікті болады.
4.2 Метрикалық есептер
Сандық белгісі бар проекциялар горизонталь П0 жазықтығында орындалса да, сызбада тікбұрышты (ортогональ) проекциялар қағидаларымен құрылатын болғандықтан, тікбұрышты проекцияларда қолданылатын əдістердің көбін сандық белгісі бар проекцияларда да пайдалануға болатынын айта кету керек. Сондықтан метрикалық (өлшем) есептерді шешуде жалпы əдістерді пайдаланамыз.