Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат Киселев Нелинейная теплопроводность.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
278.09 Кб
Скачать

1.2 Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

1.3 Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

1.4 Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

1.5 Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл, а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

  1. Нелинейная теплопроводность

Одним из актуальных направлений современной математической физики является изучение нелинейных математических моделей различных физико-химических явлений и процессов. Появление таких моделей обусловлено использованием в современной физике и технике воздействий на вещество электрических полей большой интенсивности, пучков частиц высокой энергии, мощного лазерного когерентного излучения, ударных волн высокой интенсивности, мощных тепловых потоков. Линейные математические модели являются всегда лишь определенными приближениями при описании различных процессов. Их можно использовать только в тех случаях, когда исследуемые физические величины в рассматриваемом процессе изменяются не в очень широком диапазоне значений.

Нелинейные модели позволяют описать процессы в более широком диапазоне изменения параметров. При этом нелинейности изменяют не только количественные характеристики процессов, но и качественную картину их протекания. В основе нелинейных моделей лежат нелинейные дифференциальные уравнения в частных производных, законченной теории и общих методов решения задач для которых в настоящее время не разработано. Однако для ряда нелинейных задач математической физики удается найти точные аналитические решения, анализ свойств которых позволяет выявить качественно новые нелинейные эффекты в исследуемых процессах. В частности, при исследовании высокотемпературных тепловых процессов с учетом действия таких механизмов переноса энергии, как электронная или лучистая теплопроводности, необходимо учитывать зависимость плотности р, удельной теплоемкости с и коэффициента теплопроводности среды k от температуры.

Мощность тепловых источников, распределенных в объеме среды, также может зависеть от температуры, если учитывать процессы диссоциации и ионизации молекул, фазовые переходы, излучение, горение, химические реакции и другие экзо- и эндотермические процессы, протекающие в нагретой среде.