Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gold 2.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
88.23 Кб
Скачать

8 Часткові коефіцієнти кореляції

Часткова кореляція застосовується для оцінки залежності між

1 залежною ознакою; 2 незалежню;

При цьому перша незалежна вважається такою що має завжди одинакове значення. Тому часткова кореляція дає відповідь на те як залежить перша ознака від іншої.

Коефіцієнт часткової кореляції – це показник який вимірює ступінь залежності при постійному значенню третього.

9, Оцінка достовірності

Пiддостовiрнiстюiнформацiїрозумiють деяку функцiюймовiрностi по­милки, тобто подiї, яка полягає в тому, що реальна iнформацiя в системi про деякий параметр не спiвпадає в межах заданої точностi з iстиннимзначенням.Необхiднадостовiрнiсть досягається використанням рiзнихметодiв, ре­алiзацiя яких вимагає вводу в системи обробки даних iнформацiйної, часової або структурної надлишковостi. Достовiрнiсть при обробцi даних досягаєть­ся шляхом контролю i виявлення помилок у вхiдних i вихiдних даних, їх ло­калiзацiї та виправлення. Умова пiдвищеннядостовiрностi — зниження част­ки помилок до допустимого рiвня. В конкретних АIС потрiбнадостовiрнiсть повинна встановлюватись з врахуванням небажаних наслiдкiв, до яких може привести помилка, i тих затрат, якiнеобхiднi для її попередження.До методів пiдвищеннядостовiрностi належать системнi, програмнi, апаратнi методи та захист iнформацiї.

Побудова інтервальної оцінки для дисперсії ґрунтується на тому факті, що величина   відповідає розподілу   із  df = n – 1   ступенями вільності. Тоді

                                (5.10)

або

  ,                     (5.11)

де   – квантилі розподілу хі-квадрат для заданої

ймовірності  /2 і 1- /2, відповідно (критичні значення для “хвостів” розподілу).

10.Завдання регресійного аналізу.

  1. Визначення ступеня детермінованості варіації критеріальної (залежної) змінної предикторами (незалежними змінними).

  2. Пророкування значення залежної змінної за допомогою незалежної.

  3. Визначення внеску окремих незалежних змінних у варіацію залежної.

Регресійний аналіз не можна використовувати для визначення наявності зв'язку між змінними, оскільки наявність такого зв'язку і є передумова для застосування аналізу.

12. Множинналінійнарегресія

Множинналінійнарегресіяпов’язана з впливом не одного, а кількохаргументів.

У цьомуразірегресіюназиваютьмножинною. При цьомуякщоаргументи в

функціїрегресії в першійстепені, то множиннарегресіяназивається

лінійною, у противномуразі — множинноюнелінійноюрегресією.

Довірчийінтервал для множинноїлінійноїрегресіїмаєобернену.

визначають з допомогоюкореляційноїматриці для вектора

ці для вектора,вимірюють з допомогоюкоефіцієнтамножинноїкореляції R, що є

узагальненням парного коефіцієнтакореляціїrij і обчислюється за

формулою.Чим ближчезначення R до ±1, тимкращевибранофункціюрегресії

Множиннарегресія - цеоцінювання, наприклад, змінної У лінійноюкомбінацією т незалежних зміннихх12, хт. Найпростішийваріантрегресіїмаємісце для т=2, коли необхідноспрогнозуватизалежністьоднієїзмінної У віддвохзмінних х1 і Х2.На практицівикористовуються два видирівняньмножинноїрегресії:

лінійне (адитивне):

                                                                  

 

- нелінійне (мультиплікативне): 

                                                 

,                                    

 

де а0, а1, а2, ... , аm – параметрирівняннямножинноїрегресії;

     Х1, Х2,Х3,. . ., Хm  - факторніознаки.

13.Значущість коефіцієнтів множинної регресії у випадку двофакторної моделі можна оцінити з використанням критерію Стюдента за такими формулами:

-для коефіцієнта а1: t=

-для коефіцієнта а2::t=

Де а1 а2 коефіцієнти множинної регресії , σxσzσy - основневідхиленнявідввідповіднихфакторівзалежноїознаки ;rxz–парнийкоефіціент кореляції між факторами впливу; Ryxz –множиннийкоефіцієнткореляції ; N – обсягвибірки ; k- кілкьістьфакторів у моделі.

Кртичнезнченя Т-критерієСтюдентаберуть з додатка 5 за числом ступенясвободиv=N-k-1

Вибір альтернативної гіпотези свідчить на користь достовірності коефіцієнтів .

T<Tat = H0 :коефіцієнт регресії недостовірний

T>Tat = Ha : коефіцієнт регресії достовірний

За абсолютними значенням коефіцієнтів множинної регресії неможливо виявити , як з виключиних факторів має більший вплив на залежну ознаку- оскільки їх неможливо спів ставити через те , що фактори виражені різними одиницями. Тому для цього використовують додаткові величини – коефіцієнти еластичності та бета коефіцієнти.

Коефіцієнт еластичності – величина яка показує на скільки відсотків змінюється залежна ознака при зміні факторів на 1% за умови виключення впливу решти факторів

Бета коефіцієнт – величина яка вказує на яку частину середньо квадратичного відхилення змінюється результуюча ознака, при зміні факторної на велечину її середньо квадратичного відхилення , за умови виключення дії решти факторів.Эі= ai ; βi=ai

Де аі – коефіцієнти при і-му факторі впливу ; Хі, –середнє значення і основне відхилення і-го фактора впливу; -основне відхилення залежної ознаки.

17/Дисперсійний аналіз (англ. analysis of variance (ANOVA)) являє собою статистичний метод аналізу результатів, які залежать від якісних ознак. Кожен фактор може бути дискретною чи неперервною випадковою змінною, яку розділяють на декілька сталих рівнів (градацій, інтервалів). Якщо кількість вимірювань (проб, даних) на всіх рівнях кожного з факторів однакова, то дисперсійний аналіз називають рівномірним, інакше – нерівномірним. В основі дисперсійного аналізу є такий принцип (факт з математичної статистики): якщо на випадкову величину діють взаємно незалежні фактори A, B, …, то загальна дисперсія дорівнює сумі дисперсій, зумовлених дією окремо кожного з факторів:

18. Встановлення наявності зв’язку при дисперсійному аналізі.

При обробці методом дисперсійного аналізу соціально-економічних даних необхідно мати на увазі, що в силу багаточисельності факторів та їх взаємозв'язку важко навіть при самому ретельному вирівнюванні умов встановити ступінь об'єктивного впливу кожного окремого фактора на результативну ознаку. Тому рівень залишкової варіації зумовлюється не тільки випадковими причинами, але й суттєвими факторами, які не були враховані при побудові моделі дисперсійного аналізу. Внаслідок цього залишкова, дисперсія як база порівняння інколи стає неадекватною своєму призначенню, вона явно завищується за величиною і не може виступати як критерій істотності впливу факторів. В зв'язку з цим при побудові моделей дисперсійного аналізу стає актуальною проблема відбору найважливіших факторів і вирівнювання умов для проявлення дії кожного з них. Крім того. застосування дисперсійного аналізу передбачає нормальний або близький до нормального розподіл досліджуваних статистичних сукупностей. Якщо ця умова не витримується, то оцінки, одержані в дисперсійному аналізі, виявляться перебільшеними.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]