
- •3. Тангенциальное и нормальное ускорения.
- •5. Понятие состояния в классической механике. Первый закон Ньютона – закон инерции. Инерциальные системы отсчёта.
- •6. Масса и импульс. Сила. Второй закон Ньютона. Уравнение динамики материальной точки.
- •7. Механическая система. Внешние и внутренние силы. Третий закон Ньютона. Центр масс механической системы и закон его движения.
- •8. Момент силы и момент импульса. Уравнение моментов для материальной точки.
- •9. Основное уравнение динамики вращательного движения твёрдого тела вокруг оси. Момент инерции.
- •11. Кинетическая энергия частицы и системы частиц. Связь кинетической энергии системы с работой действующих на неё сил.
- •12. Кинетическая энергия и работа при вращении твёрдого тела.
- •13. Консервативные и неконсервативные силы. Потенциальная энергия частицы и её связь с силой поля.
- •14. Полная механическая энергия и закон её изменения. Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии.
- •15. Замкнутая система материальных точек. Законы сохранения импульса и момента импульса.
- •16. Механический принцип относительности и преобразования Галилея. Классический закон сложения скоростей.
- •22. Распределение Максвелла. Скорости теплового движения молекул.
- •23. Барометрическая формула. Распределение Больцмана для частиц во внешнем потенциальном поле.
- •24. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового движения молекул.
- •25. Обратимые и необратимые процессы. Тепловые машины и их кпд. Цикл Карно. Теоремы Карно.
- •26. Энтропия и её свойства. Второе начало термодинамики.
- •27. Связь энтропии с вероятностью состояния. Статистическое истолкование второго начала термодинамики.
- •28. Явления переноса в термодинамически неравновесных системах. Общая характеристика переноса. Феноменологические уравнения явлений переноса.
- •29. Электростатическое поле, его напряжённость. Напряжённость поля точечного заряда. Принцип суперпозиции.
- •30. Поток вектора напряжённости. Теорема Гаусса и её применение для расчёта напряжённости электростатического поля.
- •31. Работа электростатического поля. Циркуляция вектора напряжённости электростатического поля. Потенциал. Связь потенциала с напряжённостью.
- •32. Типы диэлектриков. Связанные заряды. Поляризованность.
- •33. Теорема Гаусса для электростатического поля в диэлектриках. Вектор электрического смещения d. Диэлектрическая восприимчивость и диэлектрическая проницаемость вещества.
- •34. Распределение заряда на проводнике. Проводник во внешнем электростатическом поле. Электростатическая защита.
- •36. Энергия взаимодействия электрических зарядов. Энергия заряженного проводника и конденсатора.
- •37. Энергия электростатического поля. Объёмная плотность энергии электрического поля.
- •38. Общие характеристики и условия существования электрического тока. Стационарное электрическое поле. Уравнение непрерывности.
- •39. Сторонние силы. Электродвижущая сила источника тока. Обобщённый закон Ома для участка цепи с источником тока.
- •40. Работа и мощность тока. Закон Джоуля-Ленца в дифференциальной форме.
- •41. Магнитное поле. Сила Ампера. Вектор магнитной индукции, силовые линии. Принцип суперпозиции. Закон Био-Савара-Лапласа. Поле прямого и кругового токов.
- •42. Рамка с током в магнитном поле. Магнитный момент. Момент сил, действующий на рамку. Работа перемещения проводника и контура с током в магнитном поле.
- •43. Магнитный поток. Теорема Гаусса для магнитного поля. Работа по перемещению проводника с током в магнитном поле.
- •44. Магнетики. Виды магнетиков. Диамагнетики. Парамагнетики. Ферромагнетики.
- •45. Закон полного тока для магнитного поля в веществе. Напряжённость магнитного поля. Магнитная проницаемость.
- •46. Явление электромагнитной индукции. Основной закон электромагнитной индукции. Правило Ленца.
- •47. Явления самоиндукции и взаимной индукции. Индуктивность длинного соленоида. Коэффициент взаимной индукции.
- •48. Магнитная энергия тока. Плотность энергии магнитного поля.
- •49. Фарадеевская и максвелловская трактовки явления электромагнитной индукции. Вихревое электрическое поле.
- •50. Ток смещения. Система уравнений Максвелла. Относительность электрических и магнитных полей.
- •51. Понятия о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и с помощью векторных диаграмм.
- •52. Дифференциальное уравнение гармонических колебаний. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур. Энергетические соотношения для осцилляторов.
- •53. Свободные затухающие колебания. Амплитуда и частота затухающих колебаний.
- •54. Вынужденные колебания. Амплитуда и фаза вынужденных колебаний. Резонанс.
- •55. Переменный электрический ток. Закон Ома для переменного тока. Мощность переменного тока.
- •56. Упругие волны. Уравнения плоской и сферической волн. Фазовая скорость. Волновое уравнение.
- •57. Энергия и плотность энергии упругой волны. Вектор Умова.
- •58. Волновое уравнение для электромагнитного поля. Свойства электромагнитных волн.
- •59. Плотность потока электромагнитной энергии. Вектор Умова-Пойнтинга. Излучение диполя.
- •60. Свет как электромагнитная волна.
- •62. Корпускулярно-волновой дуализм электромагнитного излучения.
- •63. Гипотеза де Бройля и ее экспериментальное подтверждение. Волновые свойства микрочастиц и соотношение неопределенностей Гейзенберга.
- •64. Состояние микрочастицы в квантовой механике. Статистический смысл волновой функции.
- •65. Состав и характеристики атомного ядра. Ядерные силы и их свойства. Обменный характер ядерных сил.
- •66. Дефект массы и энергия связи ядра. Удельная энергия связи и ее зависимость от массового числа. Проблема источников энергии.
- •67. Радиоактивные превращения атомных ядер. Закон радиоактивного распада. Закономерности и происхождение альфа-, бета- и гамма–излучений.
- •68. Элементарные частицы. Лептоны, адроны. Кварки.
59. Плотность потока электромагнитной энергии. Вектор Умова-Пойнтинга. Излучение диполя.
Пло́тность
пото́ка эне́ргии — физическая
величина,
численно равная потоку
энергии через
единичную площадку, перпендикулярную
направлению потока. В электродинамике вектор
плотности потока электромагнитной
энергии носит
название вектора
Пойнтинга.
Вектор
Пойтинга— вектор плотности
потока энергии
электромагнитного
поля,
одна из компонент тензора. Вектор
Пойнтинга S можно определить через
векторное
произведение
двух векторов
Излучение диполя
Испускание
электромагнитных волн происходит при
ускоренном движении электрических
зарядов. Простейшей моделью источника
электромагнитных волн является
электрический диполь, дипольный момент
которого
гармонически
изменяется со временем. Такой элементарный
диполь называют диполем Герца.
где модуль вектора
–
амплитуда колебаний заряда
.
60. Свет как электромагнитная волна.
Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» — ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров.
Одной из характеристик света является его цвет, который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими.
61. Фотоэффект, законы фотоэффекта и его теория. Фотоны. Энергия и импульс световых квантов. Фотоэффект — это явление испускания электронов веществом под действием света. Три закона фотоэффекта: 1. Сила тока насыщения прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела. 2. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности. 3. Если частота света меньше некоторой определенной для данного вещества минимальной частоты, то фотоэффекта не происходит. Эйнштейн предположил, что фотон может выбить с поверхности только один электрон, а электрону, чтобы вырваться из вещества, необходимо совершить работу выхода Авых. Тогда из закона сохранения энергии следовало, что при фотоэффекте энергия фотона hn должна быть равна сумме работы выхода Авых и кинетической энергии фотоэлектрона со скоростью v и массой m
Фотоны -
это кванты света. Фотоны не имеют
массы покоя и электрического заряда,
стабильны.
Фотон означает свет (от греч.). Согласно закону пропорциональности массы и энергии и гипотезе Планка, энергия фотона определяется формулой: E = hν.
Фотоны имеют
импульс:
62. Корпускулярно-волновой дуализм электромагнитного излучения.
Свет имеет двойственную природу: в одних экспериментах свет проявляет себя как поток частиц(фотонов), в других – как электромагнитная волна. Двойственная природа света нашла свое отражение в принципе дополнительности, который был сформулирован Н.Бором. Согласно принципу дополнительности корпускулярные и волновые свойства света дополняют друг друга и только вместе дают полное понимание того, что представляет собой свет. Двойственная природа света получила название корпускулярно – волнового дуализма и явилась исходным пунктом для становления квантовой механики.