
- •3. Тангенциальное и нормальное ускорения.
- •5. Понятие состояния в классической механике. Первый закон Ньютона – закон инерции. Инерциальные системы отсчёта.
- •6. Масса и импульс. Сила. Второй закон Ньютона. Уравнение динамики материальной точки.
- •7. Механическая система. Внешние и внутренние силы. Третий закон Ньютона. Центр масс механической системы и закон его движения.
- •8. Момент силы и момент импульса. Уравнение моментов для материальной точки.
- •9. Основное уравнение динамики вращательного движения твёрдого тела вокруг оси. Момент инерции.
- •11. Кинетическая энергия частицы и системы частиц. Связь кинетической энергии системы с работой действующих на неё сил.
- •12. Кинетическая энергия и работа при вращении твёрдого тела.
- •13. Консервативные и неконсервативные силы. Потенциальная энергия частицы и её связь с силой поля.
- •14. Полная механическая энергия и закон её изменения. Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии.
- •15. Замкнутая система материальных точек. Законы сохранения импульса и момента импульса.
- •16. Механический принцип относительности и преобразования Галилея. Классический закон сложения скоростей.
- •22. Распределение Максвелла. Скорости теплового движения молекул.
- •23. Барометрическая формула. Распределение Больцмана для частиц во внешнем потенциальном поле.
- •24. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового движения молекул.
- •25. Обратимые и необратимые процессы. Тепловые машины и их кпд. Цикл Карно. Теоремы Карно.
- •26. Энтропия и её свойства. Второе начало термодинамики.
- •27. Связь энтропии с вероятностью состояния. Статистическое истолкование второго начала термодинамики.
- •28. Явления переноса в термодинамически неравновесных системах. Общая характеристика переноса. Феноменологические уравнения явлений переноса.
- •29. Электростатическое поле, его напряжённость. Напряжённость поля точечного заряда. Принцип суперпозиции.
- •30. Поток вектора напряжённости. Теорема Гаусса и её применение для расчёта напряжённости электростатического поля.
- •31. Работа электростатического поля. Циркуляция вектора напряжённости электростатического поля. Потенциал. Связь потенциала с напряжённостью.
- •32. Типы диэлектриков. Связанные заряды. Поляризованность.
- •33. Теорема Гаусса для электростатического поля в диэлектриках. Вектор электрического смещения d. Диэлектрическая восприимчивость и диэлектрическая проницаемость вещества.
- •34. Распределение заряда на проводнике. Проводник во внешнем электростатическом поле. Электростатическая защита.
- •36. Энергия взаимодействия электрических зарядов. Энергия заряженного проводника и конденсатора.
- •37. Энергия электростатического поля. Объёмная плотность энергии электрического поля.
- •38. Общие характеристики и условия существования электрического тока. Стационарное электрическое поле. Уравнение непрерывности.
- •39. Сторонние силы. Электродвижущая сила источника тока. Обобщённый закон Ома для участка цепи с источником тока.
- •40. Работа и мощность тока. Закон Джоуля-Ленца в дифференциальной форме.
- •41. Магнитное поле. Сила Ампера. Вектор магнитной индукции, силовые линии. Принцип суперпозиции. Закон Био-Савара-Лапласа. Поле прямого и кругового токов.
- •42. Рамка с током в магнитном поле. Магнитный момент. Момент сил, действующий на рамку. Работа перемещения проводника и контура с током в магнитном поле.
- •43. Магнитный поток. Теорема Гаусса для магнитного поля. Работа по перемещению проводника с током в магнитном поле.
- •44. Магнетики. Виды магнетиков. Диамагнетики. Парамагнетики. Ферромагнетики.
- •45. Закон полного тока для магнитного поля в веществе. Напряжённость магнитного поля. Магнитная проницаемость.
- •46. Явление электромагнитной индукции. Основной закон электромагнитной индукции. Правило Ленца.
- •47. Явления самоиндукции и взаимной индукции. Индуктивность длинного соленоида. Коэффициент взаимной индукции.
- •48. Магнитная энергия тока. Плотность энергии магнитного поля.
- •49. Фарадеевская и максвелловская трактовки явления электромагнитной индукции. Вихревое электрическое поле.
- •50. Ток смещения. Система уравнений Максвелла. Относительность электрических и магнитных полей.
- •51. Понятия о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и с помощью векторных диаграмм.
- •52. Дифференциальное уравнение гармонических колебаний. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур. Энергетические соотношения для осцилляторов.
- •53. Свободные затухающие колебания. Амплитуда и частота затухающих колебаний.
- •54. Вынужденные колебания. Амплитуда и фаза вынужденных колебаний. Резонанс.
- •55. Переменный электрический ток. Закон Ома для переменного тока. Мощность переменного тока.
- •56. Упругие волны. Уравнения плоской и сферической волн. Фазовая скорость. Волновое уравнение.
- •57. Энергия и плотность энергии упругой волны. Вектор Умова.
- •58. Волновое уравнение для электромагнитного поля. Свойства электромагнитных волн.
- •59. Плотность потока электромагнитной энергии. Вектор Умова-Пойнтинга. Излучение диполя.
- •60. Свет как электромагнитная волна.
- •62. Корпускулярно-волновой дуализм электромагнитного излучения.
- •63. Гипотеза де Бройля и ее экспериментальное подтверждение. Волновые свойства микрочастиц и соотношение неопределенностей Гейзенберга.
- •64. Состояние микрочастицы в квантовой механике. Статистический смысл волновой функции.
- •65. Состав и характеристики атомного ядра. Ядерные силы и их свойства. Обменный характер ядерных сил.
- •66. Дефект массы и энергия связи ядра. Удельная энергия связи и ее зависимость от массового числа. Проблема источников энергии.
- •67. Радиоактивные превращения атомных ядер. Закон радиоактивного распада. Закономерности и происхождение альфа-, бета- и гамма–излучений.
- •68. Элементарные частицы. Лептоны, адроны. Кварки.
56. Упругие волны. Уравнения плоской и сферической волн. Фазовая скорость. Волновое уравнение.
Упругой волной называется процесс распространения возмущения в упругой среде. Упругие волны бывают продольные и поперечные. Продольные волны – частицы среды колеблются в направлениях распространения волны. Поперечные волны – в плоскостях, в перпендикулярных направлению распространения волны.
Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими. Уравнение плоской волны: Плоская волна – волна, волновые поверхности которой имеют вид плоскостей, параллельных друг другу.
Уравнение сферической волны:
Сферическая волна – волна, волновые поверхности которой имеют вид концентрических сфер.
Волновое уравнение:
Фа́зовая
ско́рость —
скорость перемещения точки, обладающей
постоянной фазой колебательного
движения, в пространстве вдоль заданного
направления. Обычно рассматривают
направление, совпадающее с
направлением волнового
вектора.
k — волновое
число,
ω — угловая
частота.
57. Энергия и плотность энергии упругой волны. Вектор Умова.
Объемная плотность энергии волны в упругой среде (w), определяется следующим образом:
где
-
полная механическая энергия волны в
объеме
.
Объемная плотность энергии плоских
синусоидальных волн
Итак,
область пространства, участвующая в
волновом процессе, обладает дополнительным
запасом энергии. Эта энергия доставляется
от источника колебаний в различные
точки среды самой волны, следовательно,
волна переносит энергию.
Русским физиком
Н.А. Умовым в 1874 г. была введена векторная
характеристика переноса энергии упругой
волной:
Впоследствии величина S
получила название вектора Умова.
58. Волновое уравнение для электромагнитного поля. Свойства электромагнитных волн.
Волновое уравнение для электромагнитного поля:
Фазовая
скорость:
Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.
Рассмотрим основные свойства электромагнитных волн. 1. Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн. 2. Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме. 3. Электромагнитная волна является поперечной. 4. Скорость электромагнитных волн в вакууме с=300000 км/с. 5. При переходе из одной среды в другую частота волны не изменяется. 6. Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.
7. Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду,преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн). Для электромагнитных волн, так же, как и для механических, справедливы свойства дифракции, интерференции, поляризации и другие.