
- •1. Иондаушы сәулеленулер және олардың сипаттамасы
- •2. Радиациялық гигиенаның пайда болуы мен дамуының негізгі алғышарттары, оның бағыттары мен міндеттері
- •3. Радиациялық гигиенада қолданылатын негізгі атаулар, анықтамалар, түсініктер, өлшем бірліктер.
- •4. Адамға әсер ететін иондаушы сәулелену көздері.
- •4.1. Табиғи радиациялық фон(трф) туралы түсінік
- •4.2. Табиғи жағдайларда адамды сәулеленудің әсеріне ұшырататын көздері
- •Сурет 12.1. Адамның сәулелену көздерінің қазіргі заманғы классификациясы.
- •Тмд халқының негізгі сәулелену көздері және өлімге әкелетін қатерлі ісіктің жаңа түзілімдерінің пайда болу қауіптілігі (л.А.Ильин және басқалар, в.А.Книжников бойынша)
- •4.3. Иондаушы сәулеленудің адамға әсер ететін жасанды көздері
- •Иондаушы сәулеленудің жабық көздерініңқолданылуы
- •Кейбір медициналық процедуралар кезінде халық алатын шамамен алынған сіңірілген дозалары (Ушаков и.Б мәліметтері бойынша, 2004).
- •Сұйық және қатты белсенді қалдықтардың жіктелуі
- •4.4. Халықты иондаушы сәулеленуге ұшырататын қосымша көздер
- •5. Иондаушы сәулеленудің ағзаға әсері
- •5.1. Иондаушы радиацияның биологиялық нысандарға әсер ету механизмі туралы жалпы мәліметтер
- •5.2. Адамның иондаушы сәулеленуге ұшырауының биологиялық эффектілері және салдары.
- •Мүшелер мен тіндердің сындарлы мүшелердің топтарына бөлінуі
- •6. Халықтың радиациялық қауіпсіздігінің негіздері.
- •6.1. Иондаушы сәулеленулердің ашық және жабық көздерінің әсер етуі кезінде кәсіби топтағы адамдар мен халықты қорғау жөніндегі гигиеналық шаралар
- •Рентгенсәулесініңрұқсатетілгенэкспозициялықдозасыныңқуаты
- •Иондаушы сәулеленудің ашық көздерімен істелетін жұмыс кластары (СанЕмН-2003)
- •Халықтың әр түрлі жас топтары үшін тыныс алатын ауаның жылдық көлемі
- •6.2. Дозиметрлік және радиометрлікбақылау
- •Заттардың жұмыс атқарылатын беттерінің, терінің, арнайы киімдердің және жеке басты қорғайтын заттардың белсенді ластануының рұқсат етілген деңгейлері. (бөлш/см2·мин)
Кейбір медициналық процедуралар кезінде халық алатын шамамен алынған сіңірілген дозалары (Ушаков и.Б мәліметтері бойынша, 2004).
Медициналық процедура |
Доза, сЗв/жыл |
Өкпеге жүргізілетінфлюорография |
2 |
Тістердің рентгенограммасы (ортопантография) |
5 |
Кеуде қуысы мүшелерінің рентгеноскопиясы |
10 |
Іш қуысы мүшелерінің рентгеноскопиясы |
15 |
Қатерлі ісіктерді емдеу |
5000 дейін |
Қазіргі кездегі клиникалық практикадарадионуклидтік әдіс кеңінен қолданылады. Ол әр түрлі мүшелердегі қатерлі ісіктерді ерте анықтау үшін, жүрек - қан тамырлары ауруларының диагностикасында, пульмонологияда, уронефрологияда, бауыр ауруларының диагностикасында және т.б. қолданылады.
Барлық радионуклидтік зерттеулерді үлкен 2 топқа бөлуге болады(Труфанов Г.Е. жәнебасқалар, 2004):
динамикалық зерттеулер-РФП–тыңмүшелердетаралу динамикасын зерттеу мақсатында жүргізіледі; арнайы компьютерлік бағдарламалар арқылы мәліметтер өңделеді және РФП-тың таралу қисығын құру жүргізіледі;
статикалықзерттеулер- РФП-тың сырқат адамның денесінде немесе белгілі бір мүшесінде кеңістіктік таралуын бағалау үшін қолданылады (тіндерде РФП-тың жиналу деңгейі есептеледі, мүшелердің әр түрлі бөліктерінде жинақталу дәрежесінің көрсеткіштері салыстырылады, жинақталудың біркелкілігі бағаланады).
Одан басқа, бүгінгі күні ядролық медицинаның визуалды емес әдістері өзекті болып табылады.Батыс Еуропада мұндай зерттеулердің үлесіне радионуклидтік зерттеулердің жалпы санының 10-12 % келеді (радиоиммунды талдау, Helicobakter Pilory анықтауға арналған тыныс алу тесті, темір метаболизмін зерттеу және т.б.).
Сырт пішіні әр түрлі(цилиндрлер, моншақтар, инелер, жұқа сым кесінділері) препараттартүріндегі жабық көздері (60Со, 198Аu) қатерлі ісіктердіқуысішілік және тінішілік емдеуде қолданылады. Зақымданғантіндерге енгізілетін инелердің белсенділігі 0,5-10 мКи, жеке моншақтардың белсенділігі – 2-10 мКи, цилиндрлердің – 20-40 мКи, ал емдеу препараттарының енгізілетін жиынтық белсенділігі:60Со - 1480- 2220 МБк (40-60 мКи) және198Аu - 740-3700 МБк (20- 100 мКи) жетуі мүмкін.
Аппликациялық терапия мақсатында иілгіш пластиктен жасалған квадрат түріндегі аппликаторлар қолданылады, онда сәулелену қуаты 2 – 4 Гр/сағ., 32Р біркелкіорналыстырылған.
Сонымен, шаруашылықтың әр түрлі салаларында қоданылатын иондаушы сәулелену көздерінің қысқаша сипаттамаларынан, олардың қуаттылығы кең аралықтаауытқитыны, ал қолдану технологиясы өте көптүрлі екендігі көрінеді.
Ядролық сынақтар, атом нысандарындағыапаттар да, сондай-ақ халықты ішкі және сыртқы иондаушы сәулеленуге ұшырататын антропогенді көздер болып табылады.
Ең алғаш атом қаруын пайдаланумен байланысты, қоршаған ортаны ластайтын жаңа фактор –белсенді заттар туралы мәліметтер өткен ғасырдың ортасында пайда болды.Бірақ, КСРО -дағы да, басқа да атом қаруы барірі мемлекеттерде де, жүргізілген ядролық сынақтардыңнағыз масштабы туралы тек 90-шы жылдары ғана белгілі болды.Ядролық жарылыстар Семей маңындағы – Семей ядролық сынақ полигонында (СЯСП), Жаңа Жерде, Батыс Қазақстандағы («Капустин Яр», «Азғыр» полигондары), Якутияда, Поволжьежәне басқа да ондаған жерлерде болды. КСРО аумағында барлығы 715 жарылыс болды, оның ішіндегі көпшілігі (498) –Қазахстанның аумағында жүргізілді.
Ядролық қаруды сынау басқа мемлекеттер де: АҚШ (1032 жарылыс), Франция (210), Англия (45)Тынық мұхиттағыәр түрлі аралдарда, шөл далаларда және тіпті басқа да елдерде (Алжирде, Австралияда) жүргізілді.
Қытайдағы Лобнор полигонында 90-шы жылдарға қарай45 сынақ жүргізілді.Егер,1991 ж. Қазақ КСР президентінің жарлығымен СЯСП жабылса, қытай полигонында ядролық сынақтар осы уақытқа дейін жалғасуда.
1944 - 1986 жылдар аралығындаәлемде 296 радиациялық апатты жағдайлар орын алды, олардың ішінде 8 АЭС(ең ірісі Солтүстік Англиядағы, Уиндскейлде,1957 ж., АҚШ-тағы, Три-Майл-Айлендте, 1979 ж., Бразилиядағы, Гайанада,1982 ж., КСРО- дағы,ЧАЭС-да,1986 ж), 209 – әр түрлі атомдық қондырғылардың, 69 – радионуклидтермен жұмыс істеудің, 10 – зерттеулік құрастырулардың үлесінекеледі. Бұл тізімнің ішінде кемелердегі АЭҚ-дағы апаттар туралы мәліметтер жоқ (Ушаков И.Б., 2004).
Радиациялық қауіп-қатер мөлшерін жеткіліксіз бағалау мәселесі, цезий –стронций қатарындағы радионуклидтермен ортаның шынайы немесе потенциалды ластануы жағдайларының саны Ресейдегі тек ресми көздерінен алынған мәліметтері бойынша, 725 жақын болуымен ақ,өзекті болып отыр. «Маяк» ӨБ жұмыс істеуінен Зауральекөлдеріне радиобелсенділігі 4 млн Ки; Чернобыль апатының нәтижесінде – 50 млн. Ки, ал СЯСП ядролық сынақтардан 1949-1989ж. аралығында – 45 млн. Китең белсенді қалдықтар түскені белгілі.
Ядролық қаруды сынаудан күтілетін эффективті эквивалентті доза солтүстік жарты шардың тұрғындары үшін әр түрлі техногенді радионуклидтердің жиынтығынан 4,5 мЗв, оның ішінде, Cs-137 – ден - 0,88 мЗв, ал Sr-90 – 0,18 мЗв құрайтыны анықталды.
Ядролық жарылыстар мен апаттар салдарының ерекшелігіне, қоршаған ортаның тек жақын жатқан аумақтары ғана емес, сонымен қатар, алыс жатқан территориялардың да белсенді заттармен ластануы жатады. Жалпы алғанда, ядролық катаклизмдер бүкіл планетада жаһандық масштабта радионуклидтермен ластану деңгейінің жоғарылауына әкеп соғады.
Мысалы, Семей облысының жекелеген аудандары мен елді мекендерінде 137Cs және 90Sr меншікті жиынтық белсенділігі бақылаудағы елді мекеннің көрсеткіштерінен 3-63 есе жоғары болды, сонымен қатар, антропогендік радионуклидтерінің меншікті белсенділігітопырақтың 1 кг-на 500 Бк–1000 Бк дейін жететін территориялар белгілі болды.
Алтай өлкесінің (Ресей) территориясында топырақтың цезий-137-мен ластану тығыздығы 9216 мКи/км2 – 12116 мКи/км2 аралығында ауткыды, бірақ, 1949ж. 28 тамызда СЯСП-та болған жарылыс ізінің осі бойынша, топырақта жинақталған цезий-137 мен стронций-90 тығыздығының мәні 50-250 мКи/км2болды. Бұл кезде, топырақтың беткі жыртылған қабатында цезий-137 меншікті белсенділігі 20–30 Бк/кг, ал 20-40 см тереңдікте – 13 Бк/кг дейін құрды.
Ядролық қаруды сынау нәтижесінде, Италияның территориясында 1979-1985 жылдарда ұзақ өмір сүретін137Cs-ің минералды топырақтағы мөлшерітопырақтың 1кг құрғақ массасына 10 – 49 Бк, ал органикалық топырақта – 106 – 279 Бк құрды.
Оңтүстік Баварияда 1987ж маусым –қараша айларында топырақта 137Cs концентрациясы топырақтың құрғақ массасының 1 кг-да, орта есеппен, 1200150 Бкболғанын ғалымдар анықтады, оның ішінде 28020 Бк/кг ядролық сынақтан кейінгі жерге ғаламдық түсуімен байланысты болды.
Қазақстанның Шығыс Қазақстан, Көкшетау, Солтүстік Қазақстан және Павлодар облыстарының СЯСП шектесіп жатқан аумақтарындағы радиогидролитохимиялық зерттеулердің нәтижелері бойынша, цезий-137 қоры 0,07 Ки/км2 артық болатын (орташа мәні 0,065 Ки/км2 аспайтын кезде), 9 шартты аномалиялық зоналар белгіленді.
Павлодар облысы аумағының СЯСП-тан қашықтауына байланысты цезий-137 мен ластану тығыздығына қатыстыҚазақстан ғалымдарыныңжүргізілген зерттеулері көңіл аудартады. Ядролық сынақ болған жерде ластану тығыздығы 37,6 Ки/км² - 66,5 Ки/км2 құрады, ал эпицентрден 350 км қашықтықта – 0,01 Ки/км2 – 0,05 Ки/км2болды. Бұл кезде цезий-137-нің 70% жуығы грунттың, жоғарғы 5 смқабатында, яғни өсімдіктердің тамыр жүйесінің деңгейінде жиналғаны байқалды.
ҚР ҒЯО Ядролық физика институтының қауіпсіздік қызметі Қытайдың Лобнор полигонында болған ядролық жарылыстан біраз уақыт өткенен кейін Қазақстан аумағындағы өсімдіктерде, ал Өзбекстанның физиктері– мұздықтарда радионуклидтер болғанын тіркеген.
Қазақ гидрометеорология басқармасының мәліметтері бойынша, Лобнор полигонында жүргізілген ядролық жарылыстың ыдырау өнімдері, негізінен, шығыс бағытқа қарайжылжыйды Жарылыстан кейін 2-3 күн өткен соң, олар Приморск өлкесінің,Камчатканың, Сахалиннің маңындағы атмосфералық ауаны ластайды, одан кейін жер шарын айналып, белсенді бұлттар Еуропаның, Орта Азияның және Қазақстанның үстімен, солтүстік ендіктін 40о-50оаралығында өтеді. Батысқа қарай оларсирек аусып, ең алдымен Шығыс Қазақстанды ластайды.
Жоғарыда айтылғандай, Қазақстан аумағындаұзақ уақыт бойына қоршаған орта мен адамға тікелей зиянды әсерін тигізген «Капустин Яр» мен «Азғыр»полигондары жұмыс істеді, олар да қоршаған ортаға және тікелей адамға да, теріс әсер етті. Мысалы, «Казгеофизика» ҒӨБ мәліметтері бойынша, БҚО аумағында 1 км2ауданына келетін цезий-137- менластануға байланысты белсенділігі ғаламдық белсенділігінен 1,5–2,8 есе артық екені белгілі болды. ҚР ҒЯО Ядролық физика институтының, ҚазҰМУ-дың, Республикалық СЭС радиациялық бөлімінің мамандары «Капустин Яр» полигоны аймағында бірге жүргізген зерттеулерінің нәтижесінде, цезий-137 топырақтағы мөлшері 45,8±11,8 Бк/кг, стронций-90 – 105,0±8,7 Бк/кг дейін жеткені, ал «Азғыр» полигоны аймағында әр қайсысына сәйкес - 694846 Бк/кг және 785 100 Бк/кг дейін жеткені анықталды. Дәл осы радионуклидтер, сондай-ақ дәнді дақыл – жусан өсімдіктерінде, сүтте, етте, картопта, орталықтандырылмаған ауыз суы көздерінде де табылады, бұл жоғарыда көрсетілген полигондарға жақын орналасқан БҚО мен Атырау облысының поселкетұрғындарының ішкі сәулеленуге ұшырауының қауіп-қатер факторы болып табылады.
Тұрғындар тістерінің эмальдарына жүргізілген ЭПР - дозиметрия мәліметтері бойынша, есептеу жолымен қайта құрған сыртқы сәулеленудің сіңірілген дозасы бақылаудағы мәнінен 4,6-8,8 есе жоғары болып шықты.
Қазіргі жағдайда белсенді қалдықтармен байланысты мәселеге айрықша көңіл аударылады, ең алдымен, сұйық қалдықтарға, себебі олар да халықты иондаушы сәулеленуге ұшырататын көздер болуы мүмкін.
АТЭХАГ анықтамасы бойынша,белсендіқалдықтар– бұл, құрамында радионуклидтері бар, немесе өкілетті органдар бекіткен бос күйіндегі мөлшерінен жоғары концентрациясында немесе белсенділік деңгейінде радионуклидтермен ластанған,әрі қарай пайдалануғажатпайтын заттар.
Дүние жүзінде жыл сайын 200-300 мың метр куб белсенділігі төмен және орташа қалдықтар (ТОРҚ) шығарылады, соның ішінде, АҚШ-та 100 мың м3 жуық, Еуропа Одағы елдерінде шамамен 50000 м3. ТОРҚ көп мөлшерде атом станцияларының жұмыс істеуі кезінде түзіледі.
Мысалы, қуаты шамамен, 1000 МВт бір ғана суреакторы, жылына әдетте,100 – 300 м3 ТОРҚ бөліп шығарады. Көлемінің мұндай үлкен болуы, қалдықтарға АЭС-тің санитарлық аймағында болған барлық материалдар жатқызылатындығыментүсіндіріледі.Қуаты орташа атомдық электростанцияларды эксплуатациядан шығарған кездегі қалдықтардың көлемі әдетте, шамамен 10000 - 15000 тоннаны құрайды. Бұл қалдықтардың көп бөлігін бетон құрайды, ал басқа құрылыс материалдарының радиобелсенділігі айтарлықтай көп емес.
Уранды шығару және байыту кезіндегі қалдықтардың мөлшері, АЭС – ті пайдалану және пайдаланудан шығару кезінде пайда болатын қалдықтарға қарағанда, салыстырмалы түрде үлкен, бірақ оларға байланысты радиация деңгейі төмен.
Жыл сайынғы медицинада, өнеркәсіпте және ғылымдабелсенді материалдарды қолдану кезінде пайда болатын белсенді қалдықтар мөлшері салыстырмалы түрде көп емес: әдетте, миллион адамға шаққанда0,5 м3келеді. Бұл көлемі ядролық реакторлары бар елдерде миллион адамға есептегенде 10 м3 дейін өседі. Радиоактивті қалдықтардың белгілі бір мөлшері әскери сектордада пайда болады.
Жұмыс істеу уақыты біткен отынменжәне белсенді қалдықтармен жұмыс істеу кезіндегі қауіпсіздікжөніндеБірлескен Конвенция бар. Онда белсенді қалдықтарды тасымалдау, оларды сақтайтын қоймаларды орналастыру және жұмыс істейтін кәсіпорындардың өз қызметін атқаруы мен эксплуатациядан шығаруықоса кіретінбелсенді қалдықтармен жұмыс істеудің барлық аспектілеріжәне есеп беру процедуралары берілген.
Қазақстанда қабылданған белсенді қалдықтарды жіктеу жүйесі, жалпы алғанда дамыған елдерде қабылданған жіктеу жүйелеріне сәйкес келеді (12.4-кесте).
Ақш-та ТРҚ деп белсенділігі 100 нКи/г аз материалдар жіктеледі; Ұлыбританияда – оларға альфа-бөлшектерін сәулелендіру белсенділігі 108 нКи/г аспайтын және бета-бөлшектерін сәулелендіру белсенділігі 324 нКи/г төмен заттар жатқызылады.
Төмен және орташа белсенді қалдықтар адам ағзасына сумен, тағаммен және ауа арқылы тікелей түсуі кезінде қауіпті. Мысалы, суаттардың табиғи радионуклидтермен ластануы кезінде, олардың адам ағзасына әсер ету қауіптілігі пайда болады.. Мұндай әсер етуінің негізгі жолдарына суды ауыз су мақсатында қолдану және ТРН-нің тағам тізбектері бойынша, көбінесе балық арқылы, миграциясы жатады.
Бұл жағдайда, балықтың тіңдерінде қарқынды жиналатын, радий -226 практикалық маңыздылығы өте үлкен болады.
12.4-кесте