
- •1. Жұлдыздардың Әлемдегі рӛлі:
- •5. Жұлдыздардың физикалық классификациясы.
- •8. Ақ ергежейлілердің ерекшеліктерін талқылаңыз.
- •9.Әлемнің химиялық құрамының эволюциясын талқылаңыз.
- •11.Астрофотометриялық шамалар. Сәулелену ағыны.Жарықталу,жарықтылық,жарқырау.
- •12.Астрофотометриялық шамалар. Жалтырау,көрінетін жұлдыздық шама, абсолютті жұлдыздық шама.
- •13. Абсолют қара дене оның сәулеленуі.Дененің тиімді температурасын талқыларңыз.
- •14. Денелер сәулеленуінің спектрлері. Сызықты спектр және оның пайда болуы.Жұту және эмиссиялық сызықтар.
- •15.Денелер сәулеленуінің спектрлері.Үздіксіз спектр оның пайда болуы
- •16. Жұлдыздардың спектрлік классификациясын талқылаңыз.
- •17. Герцшпрунг – Рассел диаграммасы.
- •19. Жұлдыздардың ішкі құрылысының теңдеулері. Гидростатика теңдеуін талқылаңыз.
- •20. Жұлдыздардың ішкі құрылысының теңдеулері. Масса теңдеулерін талқылаңыз.
- •21.Жұлдыздардың ішкі құрылысының теңдеулері, диффузиялық жуықтаудағы энергияны тасымалдау теңдеуін талқылыаңыз.
- •Масса теңдеуі:
- •Диффузиялық жуықтаудағы энергияны тасымалдау теңдеуі:
- •22.Радиус-жарықтылық-масса тәуелділігін талқылаңыз.
- •24.Жұлдыздардың ішкі құрылысы ядро, сәулелі тасымалдау алқабы, конвекция алқабы мен жалпы атмосфераның сипаттауын талқылаңыз.
- •25.Жұлдыздардағы ядролық реакциялар, жұлдыздың ядролық энергия қоры мен сутегінің термоядролық жану уақытын бағалау.
- •26. Қалыпты жұлдыздардың спектрлері және спектрлік классификациясы
- •29. Колориметрия негіздері
- •30. Сәулелі тасымалдау алқабын қарастырыңыз.
- •31.Жұлдыздардағы конвекция
- •32.Жұлдыз атмосфералары
- •33. Жұлдыздардағы гравитациялық сығылу кезеңі
- •34. Жұлдыздардың бас тізбектіктен кейінгі ядролық реакциялар
- •36. Жұлдыздар эволюциясының ақырғы кезеңдері
- •37. Спектр-жарықтылық диаграммасы.
- •40. Қос жұлдыздар
- •41. Әлемнің химиялық құрамының эволюциясы
- •42. Алголь парадоксы. Жаңа жұлдыздар
- •43. Қосарланған жұлдыздар
- •44. Бас тізбектіктегі жұлдыздар эволюциясы
- •45. Айнымалы жұлдыз.
- •46. Жұлдыздар өлшемдерін анықтау әдістері
- •48. Сәулеленудің еркін электрондарда шашырауы
- •49. Физикалық айнымалы жұлдыздар
- •50. Бас тізбек жұлдызы ушін ml-mr қатынастары
- •51.Жұлдыздардың ішкі құрылысының теңдеуі.
- •54. Гидростатикалық тепе- теңдік теңдеуі.
- •55. Визуальды қос жұлдыздар.
14. Денелер сәулеленуінің спектрлері. Сызықты спектр және оның пайда болуы.Жұту және эмиссиялық сызықтар.
Сиретілген газдар немесе кез келген химиялық элементтің буларын қыздырғанда жарық шығара бастайды. Егер осы жарықтың жіңішке шоғын призма арқылы өткізіп, спектрге жіктейтін болса, әр түсті, жіңішке жарқыраған айқын сызықтар көрінеді (түрлі-түсті қосымадағы 7,8-суреттер). Осындай сызықтардың жиынтығын сызықтық спектр деп атайды. Зерттеулер әр газдың тек өзіне ғана тән сызықтық спектрі болатынын көрсетті.
Спектрдің әрбір сызығына қандай да бір нақты толқын ұзындығы, яғни жиілік сәйкес келеді. Олай болса, сиретілген газдар тек толқын ұындықтары (жиіліктері) белгілі бір нақты мәндерге тең электро-магниттік толқындар ғана шығарады. Һеге бұлай? Һе себепті берілген газдың спектрі жиіліктердің ν1,ν2,ν3... дискретті мәндерінің жиынтығынан тұрады? Бұл мәндер немен анықталады? Бұл маңызды сұрақтарға жауапты атомдардың ішкі құрылымынан іздеу керек. Себебі кез келген сиретілген газ молекулалары жеке атомдардан тұрады, сондықтан сәулелену атомдардың ішінде жүретін процестерге байланысты болуы керек.
Барлық сызықтық спектрлердің ішіндегі ең қарапайымы сутегінің спектрі. Спектрдің көрінетін бөлігі небары төрт сызықтан тұрады. Сондықтан тәжірибе жүзінде ең толық зерттелген — осы сутегінің спектрі. Тәжірибелердің нәтижелерін зерделей отырып швейцариялық ғалым Бальмер сутегі спектрінің көрінетін бөлігіндегі барлық сызықтардың жиілігін анықтайтын формуланы тапты:
ν=Р(1/22-1/н2),
мұндағы Р = 1,0968 • 10−7м−1 — Ридберг тұрақтысы, н = 3, 4, 5, 6, ... . Бұл — Бальмер формуласы. Бальмер формуласымен анықталатын спектрлік сызықтардың бір-бірінен өзгешелігі н-нің мәнінде, ал олардың жиынтығы Бальмер сериясы деп аталады.
Кейінірек сутегі спектрінің ультракүлгін және инфрақызыл бөліктерінен тағы бірнеше сериялар табылды. Бұл сериялардағы сызықтардың жиіліктерін де Бальмер формуласына ұксас өрнектермен анықтауға болады. Барлық сериялар үшін жазылған өрнектерді біріктіре отырып, Бальмер мынадай жалпы формула жазды:
ν=Р(1/м2-1/н2)
мұндағы м = 1,2,3,..., н = (м+1), (м+2), (м+3)...[
15.Денелер сәулеленуінің спектрлері.Үздіксіз спектр оның пайда болуы
Спектр (лат спектрұм – елестету, бейне) – физикада берілген физикалық шаманың қабылдайтын әр түрлі мәндерінің жиынтығы. Спектрлер үздіксіз және дискретті (үздікті) болып бөлінеді. Спектр ұғымы көбіне тербелмелі процестерде (мысалы, тербеліс спектрі, дыбыс спектрі, оптикалық спектрлер, теледидарлық сигналдар спектрі, т.б.) жиі қолданылады. Ядролық физикада массалар спектрі, сондай-ақ импульстер, энергиялар және жылдамдықтар спектрі ұғымдары да пайдаланылады. [1] [2]
Зат атомдары мен молекулаларыэлектромагниттік сәуле шығаруды сіңіре отырып, энергетикалық қоздырылған күйге ауысады. Атомдар мен молекулалардың осы сіңірген энергиясы олардың тербелмелі, айналмалы немесе ілгерілемелі энергиясын арттыруға жұмсалады, ал кей жағдайда ол екінші реттік сәуле шығаруға немесе фотохимиялық процесс түріне түрленеді.
Электромагниттік сәуле шығарудың бірнеше түрлері белгілі: γ-сәулелер; рентген сәуле шығару; әсірекүлгін, көрінетін, инфрақызыл, микротолқынды және радио жиілікті сәуле шығару.
Толқындық теория бойынша сәуле шығарудың осы түрлері электрлік және электромагннттік өрістер кернеулігінің тербелісін білдіреді. Спектрофотометрия мен колориметрияда анықталатын құрамы мен алдын-ала жүргізілген химиялық реакция нәтижесінде алынған зат молекулаларының таңдап сіңірулері пайдаланылады. Зат атомы энергияны сіңіре отырып, негізгі коздырылған, яғни аз энергиясы бар (Е0) күйден, екінші (Е1) күйге ауысады. Атом немесе молекула қозған күйде өте қысқа мерзімде болады (10-9 – 10-8 с), осыдан кейін электрондар өзінен-өзі едәуір төменгі энергетикалық деңгейге немесе негізгі күйінің деңгейіне ауысады. Бұл процесс жылу немесе электромагниттік сәуле шығарумен немесе бір мезгілде екеуінің болуымен косарласа жүреді. Электромагниттік сәуле шығарудың белгілі бір кванттарын сіңіруден пайда болған электрондық ауысулар сіңіретін молекулалардың электрондық спектріндегі белгілі бір қатаң сіңіру жолақшаларымен сипатталады. Бұл жерде мына жағдайды ескерте кеткен жөн. Электромагниттік тербеліс кванттарының сіңірілуі тек қана сіңіру энергиясы сіңіретін молекулалардың қоздырылған Е1 және негізгі Ео күйлеріндегі энергетикалық деңгейлер кванттарының энергияларынын айырмасымен дәл келген жағдайда өтеді:
Е = Е1 – Е0 = һв,
мұндағы һ - Планк тұрақтысы ол 6*625*10-34 Дж*с-қа тең, в - сіңірілетін сәуле шығару жиілігі (С-1), (Гц). Жиілік сіңірілетін квант энергиясымен анықталады, ол сәуле шығару таралуы жылдамдығының (ауасыз кеңістіктегі жарық толқыны жылдамдығының С=З*1010 см/сек) толқын ұзындығына қатынасымен өрнектеледі:
λв = с;
в = с / λ
Толқын ұзындығы микрометрмен немесе микронмен (1 мкм = 1 мкм = 1*10-6 м), нанометрмен немесе миллимикронмен өлшенеді (1 нм =1 мкм = 1*10-9 м). Электромагниттік сәуле шығарудың толқын ұзындығын толқындық санмен де (В) сипаттайды:
в = 1 / λ
Толқындық сан да, жиілік те энергияға пропорционал, яғни неғұрлым Е көп болса, соғұрлым толқындық сан мен жиілік көп болады. Толқын ұзындығы, керісінше, энергияға кері пропорционал болады. Неғұрлым Е аз болса, соғұрлым толқын ұзындығы ұлкен болады. Толқындық сан кері шамамен алынған сантиметрмен өлшенеді (см-1). Электромагниттік сәуле шығару ағыны интенсивтігінің кемуін өлшеуге негізделген талдау әдісі абсорбциялы спектроскопия әдістер тобын құрады