
- •Isbn 978-601-217-247-8
- •Есептеу машиналары
- •§1.1.1 Параллель виртуалды машиналар
- •1 Сурет. Vm/sp, vм/ха, vn/еsа машиналары
- •2 Сурет. Виртуалды машина жүйесі
- •3 Сурет. VMware терезесі
- •4 Сурет. Бір компьютерде бірнеше операциялық жүйе
- •5 Сурет. Вм консолынің мысалы
- •6 Сурет. Виртуалды машиналар жүйесінің архитектурасы
- •§1.1.2 Виртуалды машиналардың түрлері
- •§1.1.3 Виртуаландыру - ақпараттық жүйелерді реттеудің басты жолы
- •§1.2.1 Компьютердің аппараттық құрылымын жетілдіру
- •7 Сурет. Бір операцияны бес тактіде орындайтын тізбекті құрылғының
- •8 Сурет. Бір операцияны әрбірі бес тактіде орындайтын екі бірдей тізбекті
- •10 Сурет. Конвейерлік құрылғы өнімділігінің кіріс деректер
- •11 Сурет. Illiac IV матрицалық жүйесінің жобасы
- •§1.2.2 Компьютерді басқарудың интеллектуалдығын жоғарылату
- •12 Сурет. Ортақ жадылы параллель компьютерлер
- •13 Сурет. Таратылған жадылы параллель компьютерлер
- •14 Сурет. Ортақ шиналы мультипроцессорлық жүйе.
- •15 Сурет. Матрицалық коммутаторлардағы
- •16 Сурет. Омега - желі мультипроцессорлық жүйесі.
- •17 Сурет. Мультикомпьютерлерлік жүйелер байланыс топологияларымен: а – сызықша; б – дөңгелек; в – жұлдызша
- •18 Сурет. Процессорлардың байланыс топологияларының нұсқалары
- •19 Сурет. Сm* есептеу жүйесінің сызбасы
- •20 Сурет. Bbn Butterfly есептеу жүйесінің сызбасы
- •§1.2.3 Функционалды құрылғылар жүйесі
- •§1.3.1 Параллель компьютерлер және жүйелер классификациясы
- •21 Сурет. М. Флин классификациясының sisd және simd кластары
- •22 Сурет. М. Флин классификациясының misd және mimd кластары
- •23 Сурет. Mimd класына р. Хокнидың қосымша
- •§1.3.2 Векторлы-конвейерлік компьютелер
- •24 Сурет. Cray c90 компьютерінің жалпы сүлбесі
- •25 Сурет. Cray c90 компьютері жадысының бөлінуі
- •26 Сурет. Cray c90 компьютерінде векторлық операциялардың орындалуы
- •27 Сурет. Cray c90 компьютерінде векторлық операциялардың ілінісуі
- •§1.3.3 Ортақ жадылы параллель компьютерлер
- •28 Сурет. Hewlett Packard Superdome компьютері
- •29 Сурет. Hewlett Packard Superdome компьютерінің
- •§1.3.4 Таратылған жадылы есептеу жүйелері
- •30 Сурет. Cray t3e компьютерінің коммуникациялық торы
- •31 Сурет. Cray т3d/t3e компьютерлеріндегі барьерлі синхрондау
- •32 Сурет. Есептеу кластерінің жалпы схемасы
- •33 Сурет. Мвс-1000м суперкомпьютерінің құрылымы
- •34 Сурет. Коммуникациялық ортаның латенттілігі және өткізу қабілеті
- •§1.3.5 Метакомпьютинг
- •§2.1.1 Үлкен есептер және үлкен компьютерлер
- •35 Сурет. Сандық эксперименттің этаптары
- •§ 2.1.2 Алгоритм графы және параллель есептеулер
- •§ 2.1.3 Шексіз параллелділік концепциясы
- •§ 2.1.4 Ішкі параллельділік
- •37 Сурет. Матрицаларды көбейту графы
- •38 Сурет. Үшбұрышты жүйелерге арналған графтар
- •39 Сурет. Блокты-екідиагоналды жүйеге арналған Макрограф
- •40 Сурет. Блокты-екідиагоналды жүйеге арналған граф
- •41 Сурет. Жалпыланған пралллель форманың ярустары
- •42 Сурет. Графтағы микро және макропараллельділік
- •§2.2.1 Дәстүрлі тізбекті тілдерді пайдалану.
- •§2.2.2 OpenMp бағдарламалау технологиясы
- •44 Сурет. ОреnМр: бағдарламаның орындалу процесі
- •§2.2.3 Хабарлама жіберу негізіндегі бағдарламалау жүйелері. Mpi бағдарламалау жүйесі
- •Int mpi_Comm_rank(mpi_Comm comm, int *rank)
- •Int mpi_Send(void *buf, int count, mpi_Datatype datatype, int dest, int msgtag, mpi_Comm comm)
- •Integer count, datatype, dest, msgtag, comm, request, ierr
- •Int mpi_Isend(void *buf, int count, mpi_Datatype datatype, int dest, int msgtag, mpi_Comm comm, mpi_Request *request)
- •Int mpi_Irecv(void *buf, int count, mpi_Datatype datatype, int source, int msgtag, mpi_Comm comm, mpi_Request *request)
- •Integer count, datatype, source, msgtag, comm, request, ierr
- •Int main(argc,argv)
- •Int argc;
- •Include 'mpif.H’
- •Integer ierr, rank, size, prev, next, reqs(4), buf(2)
- •Integer stats(mpi_status_size, 4)
- •Int mpi_Waitany( int count, mpi_Request *requests, int *index, mpi_Status *status)
- •Integer count, requests(*), index, status(mpi_status_size), ierr
- •Int mpi_Waitsome( int incount, mpi_Request *requests, int *outcount, int *indexes, mpi_Status *statuses)
- •Integer incount, requests(*), outcount, indexes(*), ierr,
- •Int mpi_Test(mpi_Request *request, int *flag, mpi_Status *status)
- •Integer request, ierr, status(mpi_status_size)
- •Int mpi_Testall( int count, mpi_Request *requests, int *flag, mpi_Status *statuses)
- •Integer count, requests(*), statuses(mpi_status_size,*), ierr
- •Int mpi_Testany(int count, mpi_Request *requests, int *index, int *flag, mpi_Status *status)
- •Integer count, requests(*), index, status(mpi_status_size), ierr
- •Int mpi_Testsome( int incount, mpi_Request *requests, int *outcount, int *indexes, mpi_Status *statuses)
- •Integer incount, requests(*), outcount, indexes(*), ierr,
- •Int mpi_Iprobe( int source, int msgtag, mpi_Comm comm, int *flag, mpi_Status *status)
- •Include 'mpif.H’
- •Integer ierr, rank, size, n, nl, I, j
- •Integer irr, status(mpi_status_size), req(maxproc*2)
- •If(ir .Ne. Rank)
- •Int mpi_Send_init( void *buf, int count, mpi_Datatype datatype, int dest, int msgtag, mpi_Comm comm, mpi_Request *request)
- •Integer count, datatype, dest, msgtag, comm, request, ierr
- •Int mpi_Recv_init( void *buf, int count, mpi_Datatype datatype, int source, int msgtag, mpi_Comm comm, mpi_Request *request)
- •Integer count, datatype, source, msgtag, comm, request, ierr
- •Integer сомм, ierr
- •Include 'mpif.H’
- •Integer ibuf(maxproc)
- •Integer req(2*maxproc), statuses(mpi_status_size, maxproc)
- •Integer count, datatype, root, comm, ierr
- •Integer scount, stype, rcount, rtype, root, comm, ierr
- •Integer scount, stype, rcounts(*), displs(*), rtype, root, comm, ierr
- •Integer scount, stype, rcount, rtype, root, comm, ierr
- •Int mpi_Bcast(void *buf, int count, mpi_Datatype datatype, int source, mpi_Comm comm)
- •Int mpi_Gather( void *sbuf, int scount, mpi_Datatype stype, void *rbuf, int rcount, mpi_Datatype rtype, int dest, mpi_Comm comm)
- •Int mpi_Scatter(void *sbuf, int scount, mpi_Datatype stype, void *rbuf, int rcount, mpi_Datatype rtype, int source, mpi_Comm comm)
- •Int main(argc,argv)
- •Int argc;
- •Int numtasks, rank, sendcount, recvcount, source;
- •Int mpi_Barrier (mpi_Comm comm)
- •§ 2.2.4 Бағдарламалаудың басқа тілдері және жүйелері.
- •Параллель есептеуде қолданылатын қысқаша қазақша-орысша терминологиялық сөздік
- •Параллель есептеуде қолданылатын қысқаша орысша-қазақша терминологиялық сөздік
- •Және орта айнымалылары
- •Mpi функциялары
Int mpi_Testsome( int incount, mpi_Request *requests, int *outcount, int *indexes, mpi_Status *statuses)
incount —асинхронды операциялардың идентификаторлар саны;
requests — асинхронды қабылдау немесе жіберу операцияларының идентификаторлары;
out outcount — аяқталған алмасу операцияларының идентификаторлар саны;
out indexes — аяқталған алмасу операцияларының нөмірі;
out statuses —хабарламаны қабылдау аяқталған операцияларының параметрлері.
Фортран тіліндегі нұсқасы:
MPI_TESTSOME(INCOUNT, REQUESTS, OUTCOUNT, INDEXES, STATUSES,
IERR)
Integer incount, requests(*), outcount, indexes(*), ierr,
STATUSES(MPI_STATUS_SIZE,*)
Бұл функцияны MPI_WAITSOME функциясының (процедурасының) аналогы десе болады. Бірақ мұнда қайтарылым тез арада жүргізіледі. Егер шақырылуға дейін көрсетілген операциялардың бірде-бірі аяқталмаса, онда OUTCOUNT мәні нөлге тең болады.
Int mpi_Iprobe( int source, int msgtag, mpi_Comm comm, int *flag, mpi_Status *status)
source — процесс-жіберушінің нөмірі немесе mpi_any_source;
msgtag — күтілетін хабарлама идентификаторы немесе mpi_any_tag;
comm —коммуникатор идентификаторы;
out flag — алмасу операциясының аяқталу белгісі;
out status — келіп тұрған хабарлама параметрлері.
Күтілетін бұғатталусыз хабарламаның құрылымы және келіп түсуі жайлы ақпаратты алу. Егер хабарламаны жарамды атрибуттарымен қабылдауға болатын болса, онда flag параметрінде 1 мәні қайтарылады, және 0 қайтарылады, егер көрсетілген атрибуттарымен хабарлама әлі болмаса.
Келесі мысалда, процестер арасында жол бойынша таратылған квадрат матрицаны транспонирлеу үшін бұғаттамайтын операцияларды қолдану бағдарламасы келтірілген. Алғашында әрбір процесс а массивінің n1 жолын жеке анықтайды. Одан ары mpi_isend және mpi_irecv бұғаттамайтын операцияларының көмегімен барлық деректер алмасуды транспонирлеу үшін қажеттілер инициалданады. Басталған алмасулар фонында әрбір процесс а массивіндегі өзінің жеке бөлігін транспонирлейді. Одан кейін MPI_WAITANE процедурасының шақыруы көмегімен кезкелген басқа процестен хабарламаның келуін күтеді және бұл процестен алынған а массиві бөлігін транспонирлейді. Бұл өңдеу, қашан барлық процестен хабарлама алынбайынша жалғаса береді. Соңында берілген а массиві және транспонирленген b массиві баспаға беріледі.
program example6
Include 'mpif.H’
Integer ierr, rank, size, n, nl, I, j
parameter (N = 9)
double precision a(N, N), b(N, N)
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
nl = (N-l)/size+l
call work(a, b, N, nl, size, rank)
call MPI_FINALIZE(ierr)
end
subroutine work(a, b, n, nl, size, rank) include 'mpif.h’
integer ierr, rank, size, n, MAXPROC, nl, i, j, ii, jj, ir parameter (MAXPROC = 64)
double precision a(nl, n), b(nl, n), с
Integer irr, status(mpi_status_size), req(maxproc*2)
do i = 1, nl
do j = 1, n
ii = i+rank*nl
if(ii .le. n) a(i, j) = 100*ii+j
end do
end do
do ir = 0, size-1