
- •1.Суть и значение цтк.
- •2 .Основные пути распада углеводов.
- •3. Критерии радиочувствительности живых организмов. Оценка биологического риска облучения в малых дозах.
- •4. Биосинтез белка состоит из трех этапов – инициации, элонгации и терминации.
- •8.Законы термодинамики в биологии, доказательства их применимости к живым системам.
- •9.Строение, основные характеристики атф и др. Макроэргических соед. Живых организмов.
- •12.Направления в эволюции онтогенеза. Целостность организма в онтогенезе.
- •14.Главные направления эволюции филогенетических групп.
- •13.Основные структурные компоненты эукариотической клетки и их функции.
- •15.Хромосомная теория наследственности. Наследование признаков сцепленных с полом. Группы сцепления генов. Кроссинговер. Генетическая карта хромосом.
- •16.Особенности организации клеток прокариот, грибов, растений и животных.
- •17.Вид: критерии, признаки, структура. Пути видообразования.
- •18.Мутационный процесс. Молекулярные механизмы мутации. Классификация мутаций.
- •22.Пролиферация клеток, клеточные циклы.
- •24.Законы наследования при моно -, ди- и полигибрндном скрещивании.
- •25.Структура и функции гена.
- •26.Принципы и методы генетического анализа про - и эукариот.
- •28.Генотип как сложная система аллельных и неаллельных взаимодействий.
- •30.Репликация днк. Принцип комплементарности и его биологическая роль.
- •36.Мир м/о, общие признаки и разнообразие. Про- и эукариотические м/о.
- •37.Строение, химический состав и функции основных компонентов бактериальной кл.
- •38.Закономерности роста чистых бактериальных культур.
- •39.Метаболизм бактерий. Виды и основные назначения метаболических реакций.
- •40.Типы энергетического метаболизма у бактерий.
- •42.Биотехнология: сырьевая база, основные объекты и способы получения целевых продуктов биотехнологических процессов. Успехи и перспективы современной б/т.
- •45.Бактериофаги. Вирулентные и умеренные бактериофаги.
- •4 6.Типы жизненных циклов зелёных водорослей и параллелизм в развитии.
- •47.Отделы высших споровых растений и их жц.
- •48.Общая характеристика покрытосеменных, их классификация.
- •50.Характеристика грибов как отдельного царства органического мира.
- •51.Индивидуальное развитие покрытосеменных.
- •52.Водоросли. Отличия от высших растений. Основные типы морфоструктуры тела.
- •53.Лишайники (Lichenophyta): строение, питание, размножение. Роль в биогеоценозе.
- •54.Особенности высших растений как результат приспособления к жизни на суше.
- •62. Рост и развитие растений. Механизмы регуляции роста растений.
- •63. Структурная организация фотосинтетического аппарата.
- •64. Пигменты растений их функциональная роль.
- •65. Метаболизм углерода в процессе фотосинтеза, различные пути метаболизма, их особенности.
- •67. Минеральное питание растений. Физиологю роль, механизмы их поступления в клетку.
- •70.Вторичная полость тела, её функции и развитие.
- •74.Эндокринная система и её регуляторные функции.
- •75.Ранние ст. Зародыш. Развития (дробление, гаструляция, нейруляция). Органогенез.
- •76.Система пищеварения. Регуляция пищеварения.
- •77.Система кровообращения и её регуляция.
- •78.Внутренняя среда организма и гомеостаз.
- •Плазма крови. В 1 л плазмы содержится 900 г воды, 80 г белка и 20 г низкомолекулярных соединений.
- •80.Система дыхания у животных и человека. Регуляция дыхания.
- •85.Характеристика подтипа Позвоночных (Черепных)
- •86.Морфо-функциональные изменения основных систем
- •88.Земноводные. Морфобио адаптация к обитанию в водной и наземно-возд. Среде.
- •93.Эволюция наружного скелета конечностей, сегментация членистоногих
- •89.Морфо-функциональные и биологические приспособления членистоногих для жизни в воздушной среде.
- •91.Морфо-биологическай характеристика первичноводных челюстных позвоночных.
- •92.Паразитизм как обитание в среде второго порядка. Биологические выгоды паразитизма и адаптация экто- и эндопаразитов.
- •94.Метагенез и гетерогония как типы жизненных циклов беспозвоночных животных.
8.Законы термодинамики в биологии, доказательства их применимости к живым системам.
1ый ЗТД. Если система обменивается теплом с окружающими телами и совершает А (положительную или отрицательную), то изменяется состояние системы, т. е. изменяются ее макроскопические параметры (температура, давление, объем). Так как внутренняя энергия U однозначно определяется макроскопическими параметрами, характеризующими состояние системы, то отсюда следует, что процессы теплообмена и совершения А сопровождаются изменением ΔU системы. 1 ЗТД является обобщением закона сохранения и превращения Е для ТДС. Он формулируется следующим образом: Изменение ΔU неизолированной ТДС = разности м/у кол-ом теплоты Q, переданной системе, и общей A, кот. вкл. А против сил внешнего давления P по изменению объема dV системы и максимальную полезную работу dAmax , сопровождающую хим. превращения: dQ = dU + dA, где работа: dА = p dV + dAmax → dQ = dU + p dV + dAmax. Кол-во теплоты, полученное системой, идет на изменение ее U и совершение А над внешними телами. Опытная проверка первого закона проводилась в специальных калориметрах, где измерялась теплота, выделенная организмом в процессах метаболизма, при испарениях, а также вместе с продуктами выделения. Оказалось, что выделенная организмом теплота полностью соответствует Е, поглощенной вместе с пит. в-ми. Справедливость 1 ЗТД означает, что сам по себе организм не является независимым источником какой-либо новой Е.
2ой ЗТД. "теплота сама собой переходит лишь от тела с > температурой к телу с < температурой и не может самопроизвольно переходить в обратном направлении".
Другая формулировка: все самопроизвольные процессы в природе идут с увеличением энтропии. (Энтропия - мера хаотичности, неупорядоченности системы).
Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с > температурой к телу с <, до тех пор, пока температуры обоих тел не выровняются. При этом от 1 тела к др/ будет передано определенное количество тепла dQ. Но энтропия при этом у первого тела ↓ на меньшую величину, чем она ↑ у второго тела, кот/ принимает теплоту, т. к., по-определению, dS=dQ/T (температура в знаменателе!). То есть, в результате этого самопроизвольного процесса энтропия системы из двух тел станет >суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с ↑Т к телу с более ↓ Т привел к тому, что энтропия системы из этих двух тел увеличилась!
Заметим, что, рассматривая эту систему из двух тел, мы подразумевали, что внешнего теплопритока в нее / теплооттока из нее нет, то есть, считали ее изолированной (/ замкнутой). Отсюда еще одна формулировка 2 ЗТД: "При прохождении в изолированной системе самопроизвольных процессов энтропия системы возрастает" / "Энтропия изолированной системы → к максимуму" – т. к. самопроизвольные процессы передачи тепла всегда будут происходить, пока есть перепады температур. А что будет, если наша система из двух тел будет неизолирована (незамкнута) и, допустим, в нее поступает тепло? Ее энтропия будет ↑ еще >, т. к. при получении телом тепла энтропия его ↑ (dS=dQ/T).
В самом деле, усложнение и увеличение упорядоченности организмов в период их роста сопровождаются кажущимся уменьшением, а не увеличением энтропии, как должно было бы следовать из второго закона. Но биологические системы являются открытыми. Поэтому нужно учитывать изменение всех ТД величин во времени непоср. в ходе процессов в открытой системе. Постулат И.Р. Пригожина состоит в том, что общее изменение энтропии dS открытой системы может происходить независимо либо за счет процессов обмена с внешней средой (deS ), либо вследствие внутр. необрат. процессов (diS ): dS = deS + diS. Во всех реальных случаях diS > 0, и только если внутр. пр-сы идут обратимо и равновесно, то diS = 0. Для изолированных систем deS = 0, и мы приходим к классической формулировке второго закона: dS = diS = 0. В ф/с приток свободной Е света приводит к ↓ энтропии кл. deS < 0, а процессы дыхания, диссимиляции в кл. ↑ ее энтропию diS > 0. В зависимости от соотношения скоростей изменения deS и diS общая энтропия dS открытой системы может либо ↑, либо ↓ со временем.
3ий ЗТД. Теоремой Нернста, кот. часто наз. 3 ЗТД: энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю.