Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Генетика.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
191.47 Кб
Скачать
  1. Неаллельное взаимодействие генов

Комплемента́рное (дополнительное) действие генов — это вид взаимодействия неаллельных генов, доминантные аллели которых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обусловливает сферическую форму плодов, а рецессивных — удлинённую. При наличии в генотипе одновременно доминантных генов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фенотипу: из каждых 16 растений 9 будут иметь дисковидные плоды, 6 — сферические и 1 — удлинённые.

Эписта́з — взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый — гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I > В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз — это подавление рецессивным аллелем эпистатичного гена аллелей гипостатичного гена (i > В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.

Полимери́я — взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление F2 по фенотипу происходит в соотношении 1:4:6:4:1.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.

17 Половые хромосомы. Типы определения пола у различных организмов

Половые Хромосомы - хромосомы раздельнополых организмов, в которых расположены гены, определяющие пол и сцепленные с полом признаки организма.

Согласно хромосомной теории пола К.Корренса (1907) пол, имеющий одинаковые половые хромосомы, называют гомогаметный, так как он дает один тип гамет, а имеющий разные – гетерогаметным, так как он образует разные типы гамет.

В зависимости от того, какой пол является гетерогаметным, выделяют следующие типы хромосомного определения пола:

самки гомогаметны, самцы гетерогаметны

самки XX; самцы XY

самки XX; самцы X0

У особей гомогаметного пола ядра всех соматических клеток содержат диплоидный набор аутосом и две одинаковые половые хромосомы, которые обозначаются как XX (ZZ). Организмы такого пола продуцируют гаметы только одного класса — содержащие по одной X (Z) хромосоме. У особей гетерогаметного пола в каждой соматической клетке, помимо диплоидного набора аутосом, содержатся либо две разнокачественные половые хромосомы, обозначаемые как Х и Y (Z и W), либо только одна — X (Z) (тогда количество хромосом получается нечётным). Соответственно у особей такого пола образуются два класса гамет: либо несущие X/Z-хромосомы и Y/W-хромосомы, либо несущие X/Z-хромосомы и не несущие никаких половых хромосом.

У многих видов животных и растений гомогаметен женский пол, а гетерогаметен мужской. К ним относятся млекопитающие, некоторые насекомые, некоторые рыбы и некоторые растения и др.

18 Генетика пола растений

Большая часть растений гермофродиты у них цветки могут быть обоеполые (яблоня) и раздельполые (тмин). Двудомные -хмель, спаржа, мель. Однодомные- кукуруза

У растений не обнаружены половые хромосомы и предполагается, что гены отвечающие за половые признаки находятся в аутосомах (неполове)

2 типа генетического определения пола:

1 определяется присутствием или отсутствием х,у(ж хх, м. ху, х0)

2 связан с факторами находящ. В половывх хромасомах и развитие определяется соотношением хромасом и аутосом.

19 Наследование признаков, сцепленных с полом, и практическое использование этого явления в сельском хозяйстве.

Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием W-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.

Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей.

20 Кроссинговер и рекомбинация генов, их роль в эволюции и селекции растений

Кроссинго́вер (другое название в биологии перекрёст) — процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер.

РЕКОМБИНАЦИЯ, процесс перемещения ГЕНОВ для увеличения наследственной ИЗМЕНЧИВОСТИ потомства, производимого половым путем. Рекомбинация происходит во время МЕЙОЗА, то есть вида КЛЕТОЧНОГО ДЕЛЕНИЯ, ведущего к образованию половых клеток (ГАМЕТ).

21 Группы сцепления генов. Подсчет величины перекреста. Построение генетических карт хромосом.

Число групп сцепления генов соответствует числу хромосом в гаплоидном наборе. У мушки дрозофилы их 4, у растения кукурузы — 10. Соответствие числа групп сцепления числу хромосом является важным доказательством того, что хромосомы играют огромную роль в наследственности.

Величины перекреста и линейное расположение генов в хромосомах. Величину перекреста хромосом вычисляют в процентах кроссоверных особей к общему их числу в данном скрещивании. За единицу измерения перекреста принята его величина, равная одному проценту. Иногда ее называют Морганидой.

Определим величину перекреста в разбиравшемся нами скрещивании двух линий кукурузы. Всего было получено 1000 зерен, в том числе 18 окрашенных морщинистых и 18 неокрашенных гладких. Величина перекреста X= 36 : 1000 = 3,6.

Генетической картой хромосомы называется схема относительного расположения генов, входящих в состав одной хромосомы и принадлежащих к одной группе сцепления. Для составления хромосомной карты необходимо определить число групп сцепления, затем принадлежность гена к той или иной группе сцепления и, наконец, расположение гена в хромосоме по отношению к другим генам.

22 Причины и краткая характеристика типов изменчивости

Комбинативная изменчивость- рекомбинация генов во время слияния гаметпричины:( расхождение хромосом, случайные гаметы, кроссинговер, случайные родители)

Мутационная изм.- действие на организмы мутагенов вследствие мутация.

Геномная мутация – изм. Числа хромасом( добавление или утрата хромосом)

Хромасомная мутация – из. Числа хромасом и перестройки хромасом.

Генная мутация – связанны с изм. Структуры молекулы ДНК.

23 Закон гомологических рядов Н. И. Вавилова и его значение

в генетической изменчивости видов и родов существует определенный параллелизм. Близкие виды благодаря большому сходству их генотипов (почти одинаковому набору генов) обладают сходной наследственной изменчивостью. Если все известные вариации признаков у хорошо изученного вида расположить в определенном порядке, то и у других родственных видов можно обнаружить почти все те же вариации изменчивости признаков.

1. Закон гомологических рядов наследственной изменчивости позволяет находить нужные признаки и варианты в почти бесконечном многообразии форм различных видов как культурных растений и домашних животных, так и их диких родичей.

2. Он дает возможность успешно осуществлять поиск новых сортов культурных растений и пород домашних животных с теми или иными требуемыми признаками. В этом заключается огромное практическое значение закона для растениеводства, животноводства и селекции.

3. Его роль в географии культурных растений сопоставима с ролью Периодической системы элементов Д. И. Менделеева в химии. Применяя закон гомологических рядов, можно установить центр происхождения растений по родственным видам со сходными признаками и формами, которые развиваются, вероятно, в одной и той же географической и экологической обстановке.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]