
- •А.Н. Лыков автоматизация технологических процессов и производств
- •Оглавление
- •Введение
- •1. Эффективность автоматизации. Надежность
- •1.1. Необходимость автоматизации
- •1.2. Факторы, влияющие на эффективность автоматизации
- •1.3. Показатели социально-экономической эффективности
- •Окупаемость:
- •Усиление желания внедрять автоматизацию (человеческий фактор):
- •План-график автоматизации:
- •1.4. «Подводные камни» при автоматизации
- •Еще раз о человеческом факторе
- •Секрет высокой надежности – отношение к делу производственного персонала:
- •1.6. Проблемы с надежностью в России
- •Наработка на отказ различных счпу
- •Качество микросхем
- •Контрольные вопросы
- •2. Автоматизация в машиностроении, системы чпу
- •2.1. Системы автоматизации в машиностроении
- •2.2. История развития счпу (до 1990 года)
- •2.3. Классификация существующих счпу
- •2.4. Промышленные роботы
- •2.4.1. Промышленные роботы (история начального развития)
- •2.4.2. Необходимость роботов
- •2.4.3. Сферы применения роботов
- •2.4.4. Примеры применения роботов
- •2.5. Словарь терминов и определений в счпу
- •Контрольные вопросы
- •3. Информация в системах автоматизации
- •3.1. Точность информации
- •3.2. Дискретизация по уровню и по времени непрерывного сигнала
- •3.3. Аппаратные информационные уровни
- •3.4. Преобразователи информации
- •3.5. Уровни управления в системах автоматизации
- •3.6. Тенденции в построении производственных систем
- •3.7. Фазы информационных преобразований для станка с счпу
- •3.8. Стандартизация и унификация средств автоматизации
- •Контрольные вопросы
- •4. Кодирование информации
- •4.1. Буквенные коды
- •4.2. Буквенно-цифровые коды
- •4.3. Цифровые коды
- •Код Грея в датчиках положения
- •Контрольные вопросы
- •5. Интегральные преобразователи информации
- •5.1. Интегральные догические микросхемы
- •5.2. Цифроаналоговые преобразователи (цап)
- •5.3. Аналого-цифровые преобразователи (ацп)
- •5.4. Цифроаналоговый процессор км1813ве1
- •Контрольные вопросы
- •6. ПреобразоваТели информации
- •6.1. Преобразователь «частота – напряжение»
- •6.2. Преобразователь «частота – код»
- •6.3. Преобразователь «код – частота»
- •6.4. Преобразователь «унитарный код – фаза»
- •6.5. Преобразователь «фаза – код»
- •6.6. Преобразователь «фаза – напряжение»
- •6.7. Узлы гальванической развязки в системах автоматизации
- •Контрольные вопросы
- •7. Управляющие программы счпу
- •7.1. Структура управляющих программ для станков с чпу
- •7.2. Значения символов адресов
- •7.3. Формат кадра учпу
- •7.4. Повышение языкового уровня управляющих программ
- •Контрольные вопросы
- •8. Сап станков и роботов
- •8.1. Подготовка управляющей программы (уп)
- •8.2. Системы автоматизированного программирования уп
- •8.3. Системы cad/cam
- •8.3.1. Система AutoCad
- •8.3.2. Система bCad
- •8.3.2.1. Плоское черчение
- •8.3.2.2. Объемное моделирование
- •8.3.2.3. Генерация чертежей
- •8.3.2.4. Статистика и расчет
- •8.3.2.5. Получение реалистических изображений
- •8.3.2.6. Пользовательский интерфейс
- •8.3.2.7. Совместимость
- •8.3.2.8. Перспективы
- •8.3.3. Система ГеМма-3d при производстве технологической оснастки на оборудовании с чпу
- •8.3.4. Продукты adem cad/cam
- •8.3.4.2. Модуль adem nс
- •8.3.5. Графика-81
- •8.3.6. Базис 3.5
- •8.3.6.1. Аппаратное обеспечение
- •8.3.6.2. Интерфейс пользователя
- •8.3.6.3. Построение изображения
- •8.3.6.4. Ввод текстовой информации
- •8.3.6.5. Инженерные расчеты
- •8.3.6.6. Связь с другими приложениями
- •8.3.7.1. Твердотельное моделирование
- •8.3.7.2. Сборки
- •8.3.7.3. Полезные «мелочи»
- •Контрольные вопросы
- •9. Интерполяция. Аппаратные стойки чпу
- •9.1. Траектории движения
- •9.2. Основные задачи при интерполяции
- •9.3. Математическое решение уравнений движения
- •9.4. Реализация интегрирования в счпу
- •9.5. Счпу «Контур-2пт»*
- •9.6. Счпу «н22»**
- •9.7. Счпу «н33»*
- •9.8. Блок задания скорости (бзс) аппаратной стойки чпу
- •Контрольные вопросы
- •10. Системы связи счпу со станком
- •10.1. Позиционные кодовые счпу
- •10.2. Позиционная счетно-импульсная счпу
- •10.3. Контурные счпу
- •10.4. Частичная инвариантность по управлению
- •10.5. Первые поколения контурных счпу
- •10.6. Фазовый индикаторный и разностный режимы работы устройства связи с электроприводом
- •10.7. Расчетные соотношения для фазовых систем
- •10.8. Микропроцессорные стойки чпу
- •Контрольные вопросы
- •11. Микропроцессорные счпу и тенденции развития
- •11.1. Архитектура и возможности микропроцессорных систем управления типа сnс до 1990 года (однопроцессорные мпс км85, 2р-32м, 2с42-45, многопроцессорные мпс Нейрон и3, мс2101, 3с150, s8600)
- •11.2. Новые системы чпу
- •11.2.1. Архитектура открытой системы чпу
- •11.2.2. Открытое ядро чпу
- •11.2.3. Системы чпу с web-доступом
- •11.2.4. Система понятий стандарта iso 14649
- •11.2.5. Чпу, воспринимающие стандарт step-nc
- •11.2.6. Среда разработки управляющих программ для систем чпу AdvancEd
- •11.3. Примеры интеллектуальных счпу последнего поколения
- •12.2. Лвс: доступ к каналу, способы кодирования, типы сообщений, сетевые системы
- •Контрольные вопросы
- •13. Автоматизированные системы контроля и учета энергоресурсов (аскуэ)
- •13.1. Требования к автоматизированным системам контроля и учета энергоресурсов
- •13.2. Уровни аскуэ
- •13.3. Коммерческие и технические аскуэ
- •13.4. Первичные измерительные приборы
- •13.5. Первые российские аскуэ
- •13.6. Современные аскуэ
- •13.7. Аскуэ бытовых потребителей
- •13.8. Энергосбережение и аскуэ
- •Контрольные вопросы
- •14. Автоматизация котельных
- •14.1. Описание и классификация котельных установок
- •14.2. Котельная как объект регулирования
- •14.3. Регулирование нагрузки котла
- •14.4. Регулирование уровня воды в барабане котла
- •14.5. Регулирование температуры перегретого пара
- •14.6. Управление вентилятором
- •14.7. Управление дымососом
- •14.8. Система управления шиберами
- •14.9. Автоматика безопасности котельной
- •14.10. Определение параметров объекта регулирования, регуляторов и настройка аср Расчет параметров объекта управления
- •Регуляторы с им постоянной скорости
- •Технически оптимальная настройка регуляторов
- •15. Автоматизация турбомеханизмов и энергосбережение
- •15.1. Характеристика турбомеханизмов
- •15.2. Расчет мощности на валу турбомеханизма
- •15.3. Регулирование производительности турбомеханизмов
- •15.4. Особенности регулирования скорости турбомеханизмов
- •15.5. Расчет экономической эффективности применения частотно-регулируемого электропривода
- •Список ЛитературЫ
- •Приложение ктс «Ресурс»
- •Ктс «Альфа Смарт», «Альфа Центр»
- •Птк «эком»
- •Технические характеристики аскуэ «Континиум»
- •Регистраторы аварийных событий
- •Список сокращений
- •Автоматизация технологических процессов и производств
Контрольные вопросы
1. Приведите структурную схему типовой АСУТП на основе рассмотренных различных примеров реальных АСУТП.
2. Как реализуется нижний уровень АСУТП?
3. Каковы принципы доступа к локальной сети в АСУТП?
4. Перечислите принципы организации физического, канального сетевого уровня локальных сетей.
5. Приведите примеры синтаксиса в промышленных ГПС для транспортного и сессионного уровней передачи информации.
6. Каковы характерные особенности АСУТП «Проконтроль», «Даматис ХР», «ТДС 3000», «Micon», «Квинт»?
13. Автоматизированные системы контроля и учета энергоресурсов (аскуэ)
13.1. Требования к автоматизированным системам контроля и учета энергоресурсов
Высокая стоимость энергоресурсов в последние годы стала причиной того, что отношение к организации энергоучета в промышленности и других энергоемких отраслях (транспорт и жилищно-коммунальное хозяйство) кардинально изменилось. Потребители начинают осознавать, что в их интересах рассчитываться с поставщиком энергоресурсов не по каким-то условным нормам, договорным величинам или устаревшим и неточным приборам, а на основе современного и высокоточного приборного учета. Промышленные предприятия пытаются как-то реорганизовать свой энергоучет «вчерашнего дня», сделав его адекватным требованиям дня сегодняшнего. Под давлением рынка энергоресурсов потребители приходят к пониманию той простой истины, что первым шагом в экономии энергоресурсов и снижении финансовых потерь является точный учет. С этой целью как поставщики, так и потребители создают на своих объектах автоматизированные системы контроля и учета энергоресурсов (АСКУЭ). При наличии современной АСКУЭ промышленное предприятие полностью контролирует весь свой процесс энергопотребления и имеет возможность по согласованию с поставщиками энергоресурсов гибко переходить к разным тарифным системам, минимизируя свои энергозатраты.
На ряде предприятий АСКУЭ функционируют уже не один год, на других предприятиях начинается их внедрение, а руководители третьих только размышляют, нужно ли им это. Ход развития мировой энергетики и промышленности показывает, что альтернативы принципу «все надо учитывать и за все надо платить» нет. И если сегодня где-то еще удается бесконтрольно пользоваться энергоресурсами или списывать потери в сетях на потребителя, то завтра это станет попросту невозможно. Преимущества будут у того, кто все процессы энергопотребления полносью контролирует.
Постоянное удорожание энергоресурсов требует от промышленных предприятий разработки и внедрения комплекса мероприятий по энергосбережению, включающих жесткий контроль поставки/потребления всех видов энергоресурсов, ограничение и снижение их доли в себестоимости продукции. Современная АСКУЭ является измерительным инструментом, позволяющим это осуществить, и лежит в основе системы энергосбережения промышленных предприятий. Первый и самый необходимый шаг в этом направлении, который надо сделать уже сегодня, – это внедрить автоматизированный учет энергоресурсов, позволяющий контролировать параметры всех энергоносителей по всей структурной иерархии предприятия с доведением этого контроля до каждого рабочего места. Благодаря этому будут сведены к минимуму производственные и непроизводственные затраты на энергоресурсы; это позволит решать спорные вопросы между поставщиком и потребителем энергоресурсов не волевыми, директивными мерами, а на основании объективного автоматизированного учета.
Итак, можно выделить следующие основные цели создания АСКУЭ.
1. Автоматизированные системы контроля и учета энергоресурсов при минимальном участии человека на этапе измерения, сбора и обработки данных должны обеспечить достоверный, точный, оперативный и гибкий, адаптируемый к различным тарифным системам учет как со стороны поставщика энергоресурсов, так и со стороны потребителя.
2. На основе достоверной и оперативной информации можно принять решение по диспетчерскому или автоматическому управлению, чтобы снизить максимумы мощности, выбрать оптимальный уровень энергопотребления для различных технологических режимов или суточного/недельного графика, управлять компенсирующими установками реактивной энергии и другими энергопроизводящими установками.
3. По результатам анализа энергопотребления при использовании современных СУБД можно составлять энергобалансы на год, 5 лет и более с целью определения потребности в энергии предприятия в целом и наиболее энергоемких агрегатов и цехов, проводить анализ эффективности использования энергоресурсов, выявлять непроизводительные расходы и потери, находить норму расхода энергии на единицу продукции и обеспечивать снижение энергопотребления.
4. Коммерческий и технический учет поставки/потребления энергоресурсов позволяет экономически обоснованно разрабатывать и осуществлять комплекс мероприятий по энергосбережению, своевременно его корректировать, обеспечивая динамическую оптимизацию затрат на энергоресурсы в условиях изменяющейся экономической среды.
До последнего времени под АСКУЭ понимались в основном контроль и учет электроэнергии. Поэтому иногда АСКУЭ распознают как «Автоматизированные системы контроля и учета электроэнергии» или «Автоматизированные системы коммерческого учета электроэнергии». Однако в перспективе на предприятиях и в сфере ЖКХ будет востребован контроль и учет всех видов энергоресурсов: тепловой энергии, холодной и горячей воды, природного газа, сжатого воздуха и т.д. Системы контроля и учета отдельных энергоресурсов различаются между собой незначительно. Поэтому принимаем под АСКУЭ «Автоматизированные системы контроля и учета энергоресурсов».
В настоящее время выпускается множество систем АСКУЭ. Имеется тенденция в каждом регионе разработать «свою» АСКУЭ. Учитывая множество устройств сбора информации от датчиков с импульсными, аналоговыми, цифровыми выходами, множество систем передачи информации, комплексов программного обеспечения для систем сбора, обработки, хранения, визуализации, передачи информации, пользователи АСКУЭ бывают в затруднении при выборе КТС и ПО.
Рассмотрим систему учета и управления энергоресурсами среднего предприятия.
Основной пользователь системы – отдел главного энергетика – желает оперативно получить следующую информацию:
коммерческий учет тепловой, электрической энергии, газа, воды, сжатого воздуха и т.п. на вводах в предприятие;
коммерческий учет энергоресурсов, отпускаемых субабонентам;
технический учет энергоресурсов на вводе в отдельные цеха или на входе/выходе отдельных энергопроизводств (котельных, компрессорных, насосных и т.д.);
контроль (телемеханика) режимов работы оборудования и состояния электрических сетей (ток, напряжение, частота) на заводских подстанциях;
контроль за теплотехническим оборудованием завода (положение задвижек, состояние клапанов);
телеуправление (возможно автоматическое) электротехническим и теплотехническим оборудованием.
К этим требованиям добавляются требования от энергетиков цехов и мастеров (технических руководителей) различных энергообъектов (котельных, компрессорных и т.д.) по организации учета расхода энергоресурсов и контроля параметров энергоресурсов на конкретных технологических объектах (например, расход газа на металлургическую печь или котел, электроэнергии на насос и т.д.). При этом необходимо, чтобы, с одной стороны, система учета включала в себя функции оперативного контроля параметров энергоносителей, а с другой стороны – чтобы функции оперативного контроля состояния оборудования и сетей (функции телемеханики) были дополнены возможностью ретроспективы (восстановления) состояния оборудования и параметров за любой период времени. Фактически получается, что к системе учета и к системе телемеханики предъявляются во многом схожие требования: возможность оперативного контроля и архивирования параметров энергоресурсов и состояния оборудования. Несомненно, эти функции могут выполняться любой стандартной системой сбора данных.
Но коммерческий учет предъявляет повышенные требования к сохранности и достоверности информации. Выражается это в том, что:
системы учета должны вести расчеты и архивирование информации на нижнем уровне (уровень счетчиков или тепловычислителей),
системы учета должны иметь сертификаты Госреестра на измерение параметров энергоносителей,
оборудование должно соответствовать требованиям по ограничению несанкционированного доступа, пломбированию и т.д.
На этапе обследования предприятия, изучения установленного парка счетчиков, датчиков, преобразователей (полевой уровень), условий эксплуатации вместе со специалистами КИПиА (или АСУ ТП) появляются требования и к среднему уровню – уровню тепловычислителей, устройств телемеханики, УСПД; для упрощения назовем все это контроллерами:
контроллеры должны быть проектно компонуемыми на необходимое число каналов ввода-вывода;
контроллеры должны работать с очень широким спектром входных сигналов – от «естественных» сигналов термопар и термосопротивлений до «кодовых» сигналов «интеллектуальных» датчиков, счетчиков, модулей ввода-вывода;
контроллеры должны уметь считать расходы по различным алгоритмам, в зависимости от типов установленных преобразователей и счетчиков (от диафрагм до ультразвуковых расходомеров);
контроллеры должны иметь возможность гибкой перенастройки и конфигурации персоналом на различные преобразователи, счетчики, датчики и виды энергоносителей;
контроллеры должны иметь возможность автоматического управления исполнительными механизмами. Для конфигурации каналов управления не должно требоваться программирование контроллеров;
контроллеры должны иметь гальваническую изоляцию всех каналов ввода-вывода, в том числе и коммуникационных – требование, выработанное многолетней практикой;
контроллеры должны соответствовать промышленным условиям эксплуатации, это подразумевает требования и по температуре окружающей среды, и по пылебрызгозащищенности, по качеству электропитания, по возможным перенапряжениям на каналах ввода-вывода и т.д.;
контроллеры должны иметь развитые коммуникационные возможности. «Джентльменский набор» – это промышленная сеть на базе RS-485 и дополнительно еще один последовательный порт для локального подключения или использования с модемами различных типов. Желательна поддержка основных промышленных сетей FieldBus (Modbus, Profibus, CANopen, AS-i и др.), ЛВС типа Ethernet с протоколом TCP/IP.
Разрабатываемая АСКУЭ должна интегрировать существующие «локальные» системы учета, если они работают и не стоит вопрос об их замене.
Кроме энергетиков, требования к системе выставляют и службы, непосредственно занимающиеся АСУ ТП. На некоторых предприятиях это могут быть отделы АСУ и КИПиА, на других – объединенный отдел АСУ ТП. Важно, что по распределению функций внутри предприятия эти службы являются исполнителем, ответственным перед заказчиком (отделом главного энергетика) за выбор подрядчика, качество и сроки работ. Поэтому и требования к внедряемой системе с их стороны достаточно жесткие: им за нее отвечать и ее эксплуатировать.
Рассмотрим типовые требования к верхнему уровню системы – уровню баз данных, сетей и АРМ. Как правило, на предприятии уже существует корпоративная сеть, зачастую используются современное оборудование и технологии, которые обслуживают финансовые, складские и прочие задачи, не относящиеся к АСУ ТП. По принятой терминологии такие системы называются АСУ производством (АСУП) и самостоятельно разрабатываются специалистами предприятия либо покупаются. В любом случае специалисты предъявляют требования, чтобы верхний уровень внедряемой системы легко интегрировался в уже существующую сеть, и даже если это будет какая-то локальная подсистема, то и организация баз данных, и выбор операционных систем, и сетевое взаимодействие компонентов, и дизайн АРМ должен соответствовать уровню предприятия и тем стандартам, которые там используются. Можно представить требования, которым должно соответствовать программное обеспечение верхнего уровня подобной системы:
используемые операционные системы – в большинстве случаев это Windows 98/NT/2000 и выше;
единая база данных на стандартных СУБД, причем все чаще требуются не «настольные» СУБД (Paradox, Access), а мощные SQL базы данных (MS SQL 7.0, Oracle), которые могут одновременно обслуживать десятки АРМ и гарантируют достоверность и сохранность информации;
использование клиент-серверной технологии взаимодействия между АРМ и сервером баз данных, причем клиенты должны быть «тонкими», то есть все основные вычисления (бизнес-логика) происходят на сервере баз данных или на специализированном сервере приложений, а АРМ конкретных приложений больше используются как терминалы, что также гарантирует сохранность и достоверность данных;
встроенные возможности администрирования и конфигурирования программного обеспечения, обеспечение защиты от несанкционированного доступа к информации (дополнительно к стандартным возможностям Windows NT и SQL сервера);
полная и подробная документация, позволяющая программистам предприятия разрабатывать собственные приложения, используя существующие «хранимые процедуры» и базы данных;
интеграция существующих узлов учета в систему, причем на верхнем уровне это должна быть полная интеграция, то есть единые базы данных, единые АРМ, единые отчеты;
разделение доступа клиентов (АРМ) к базе данных.