
- •А.Н. Лыков автоматизация технологических процессов и производств
- •Оглавление
- •Введение
- •1. Эффективность автоматизации. Надежность
- •1.1. Необходимость автоматизации
- •1.2. Факторы, влияющие на эффективность автоматизации
- •1.3. Показатели социально-экономической эффективности
- •Окупаемость:
- •Усиление желания внедрять автоматизацию (человеческий фактор):
- •План-график автоматизации:
- •1.4. «Подводные камни» при автоматизации
- •Еще раз о человеческом факторе
- •Секрет высокой надежности – отношение к делу производственного персонала:
- •1.6. Проблемы с надежностью в России
- •Наработка на отказ различных счпу
- •Качество микросхем
- •Контрольные вопросы
- •2. Автоматизация в машиностроении, системы чпу
- •2.1. Системы автоматизации в машиностроении
- •2.2. История развития счпу (до 1990 года)
- •2.3. Классификация существующих счпу
- •2.4. Промышленные роботы
- •2.4.1. Промышленные роботы (история начального развития)
- •2.4.2. Необходимость роботов
- •2.4.3. Сферы применения роботов
- •2.4.4. Примеры применения роботов
- •2.5. Словарь терминов и определений в счпу
- •Контрольные вопросы
- •3. Информация в системах автоматизации
- •3.1. Точность информации
- •3.2. Дискретизация по уровню и по времени непрерывного сигнала
- •3.3. Аппаратные информационные уровни
- •3.4. Преобразователи информации
- •3.5. Уровни управления в системах автоматизации
- •3.6. Тенденции в построении производственных систем
- •3.7. Фазы информационных преобразований для станка с счпу
- •3.8. Стандартизация и унификация средств автоматизации
- •Контрольные вопросы
- •4. Кодирование информации
- •4.1. Буквенные коды
- •4.2. Буквенно-цифровые коды
- •4.3. Цифровые коды
- •Код Грея в датчиках положения
- •Контрольные вопросы
- •5. Интегральные преобразователи информации
- •5.1. Интегральные догические микросхемы
- •5.2. Цифроаналоговые преобразователи (цап)
- •5.3. Аналого-цифровые преобразователи (ацп)
- •5.4. Цифроаналоговый процессор км1813ве1
- •Контрольные вопросы
- •6. ПреобразоваТели информации
- •6.1. Преобразователь «частота – напряжение»
- •6.2. Преобразователь «частота – код»
- •6.3. Преобразователь «код – частота»
- •6.4. Преобразователь «унитарный код – фаза»
- •6.5. Преобразователь «фаза – код»
- •6.6. Преобразователь «фаза – напряжение»
- •6.7. Узлы гальванической развязки в системах автоматизации
- •Контрольные вопросы
- •7. Управляющие программы счпу
- •7.1. Структура управляющих программ для станков с чпу
- •7.2. Значения символов адресов
- •7.3. Формат кадра учпу
- •7.4. Повышение языкового уровня управляющих программ
- •Контрольные вопросы
- •8. Сап станков и роботов
- •8.1. Подготовка управляющей программы (уп)
- •8.2. Системы автоматизированного программирования уп
- •8.3. Системы cad/cam
- •8.3.1. Система AutoCad
- •8.3.2. Система bCad
- •8.3.2.1. Плоское черчение
- •8.3.2.2. Объемное моделирование
- •8.3.2.3. Генерация чертежей
- •8.3.2.4. Статистика и расчет
- •8.3.2.5. Получение реалистических изображений
- •8.3.2.6. Пользовательский интерфейс
- •8.3.2.7. Совместимость
- •8.3.2.8. Перспективы
- •8.3.3. Система ГеМма-3d при производстве технологической оснастки на оборудовании с чпу
- •8.3.4. Продукты adem cad/cam
- •8.3.4.2. Модуль adem nс
- •8.3.5. Графика-81
- •8.3.6. Базис 3.5
- •8.3.6.1. Аппаратное обеспечение
- •8.3.6.2. Интерфейс пользователя
- •8.3.6.3. Построение изображения
- •8.3.6.4. Ввод текстовой информации
- •8.3.6.5. Инженерные расчеты
- •8.3.6.6. Связь с другими приложениями
- •8.3.7.1. Твердотельное моделирование
- •8.3.7.2. Сборки
- •8.3.7.3. Полезные «мелочи»
- •Контрольные вопросы
- •9. Интерполяция. Аппаратные стойки чпу
- •9.1. Траектории движения
- •9.2. Основные задачи при интерполяции
- •9.3. Математическое решение уравнений движения
- •9.4. Реализация интегрирования в счпу
- •9.5. Счпу «Контур-2пт»*
- •9.6. Счпу «н22»**
- •9.7. Счпу «н33»*
- •9.8. Блок задания скорости (бзс) аппаратной стойки чпу
- •Контрольные вопросы
- •10. Системы связи счпу со станком
- •10.1. Позиционные кодовые счпу
- •10.2. Позиционная счетно-импульсная счпу
- •10.3. Контурные счпу
- •10.4. Частичная инвариантность по управлению
- •10.5. Первые поколения контурных счпу
- •10.6. Фазовый индикаторный и разностный режимы работы устройства связи с электроприводом
- •10.7. Расчетные соотношения для фазовых систем
- •10.8. Микропроцессорные стойки чпу
- •Контрольные вопросы
- •11. Микропроцессорные счпу и тенденции развития
- •11.1. Архитектура и возможности микропроцессорных систем управления типа сnс до 1990 года (однопроцессорные мпс км85, 2р-32м, 2с42-45, многопроцессорные мпс Нейрон и3, мс2101, 3с150, s8600)
- •11.2. Новые системы чпу
- •11.2.1. Архитектура открытой системы чпу
- •11.2.2. Открытое ядро чпу
- •11.2.3. Системы чпу с web-доступом
- •11.2.4. Система понятий стандарта iso 14649
- •11.2.5. Чпу, воспринимающие стандарт step-nc
- •11.2.6. Среда разработки управляющих программ для систем чпу AdvancEd
- •11.3. Примеры интеллектуальных счпу последнего поколения
- •12.2. Лвс: доступ к каналу, способы кодирования, типы сообщений, сетевые системы
- •Контрольные вопросы
- •13. Автоматизированные системы контроля и учета энергоресурсов (аскуэ)
- •13.1. Требования к автоматизированным системам контроля и учета энергоресурсов
- •13.2. Уровни аскуэ
- •13.3. Коммерческие и технические аскуэ
- •13.4. Первичные измерительные приборы
- •13.5. Первые российские аскуэ
- •13.6. Современные аскуэ
- •13.7. Аскуэ бытовых потребителей
- •13.8. Энергосбережение и аскуэ
- •Контрольные вопросы
- •14. Автоматизация котельных
- •14.1. Описание и классификация котельных установок
- •14.2. Котельная как объект регулирования
- •14.3. Регулирование нагрузки котла
- •14.4. Регулирование уровня воды в барабане котла
- •14.5. Регулирование температуры перегретого пара
- •14.6. Управление вентилятором
- •14.7. Управление дымососом
- •14.8. Система управления шиберами
- •14.9. Автоматика безопасности котельной
- •14.10. Определение параметров объекта регулирования, регуляторов и настройка аср Расчет параметров объекта управления
- •Регуляторы с им постоянной скорости
- •Технически оптимальная настройка регуляторов
- •15. Автоматизация турбомеханизмов и энергосбережение
- •15.1. Характеристика турбомеханизмов
- •15.2. Расчет мощности на валу турбомеханизма
- •15.3. Регулирование производительности турбомеханизмов
- •15.4. Особенности регулирования скорости турбомеханизмов
- •15.5. Расчет экономической эффективности применения частотно-регулируемого электропривода
- •Список ЛитературЫ
- •Приложение ктс «Ресурс»
- •Ктс «Альфа Смарт», «Альфа Центр»
- •Птк «эком»
- •Технические характеристики аскуэ «Континиум»
- •Регистраторы аварийных событий
- •Список сокращений
- •Автоматизация технологических процессов и производств
10.5. Первые поколения контурных счпу
В первоначальных системах ЧПУ широко использовались шаговые двигатели, на систему управления которых поступает сразу унитарный код с интерполятора.* Данные разомкнутые системы в настоящее время вытесняются следящими электроприводами, рассмотренными ниже.
10.6. Фазовый индикаторный и разностный режимы работы устройства связи с электроприводом
В СЧПУ типа CNC индикаторный режим реализуется по структуре, показанной на рис. 10.7, где ПКФ, ЦАП, ФД (ПФН) – преобразователи информации, принципы работы которых описаны в предыдущих главах. В этом случае *, ω* – двоичный код, поступающий с интерполятора и блока задания скорости.
Делители частоты ДЧ имеют коэффициент деления N.
Режим работы датчика положения в фазовом индикаторном режиме называют режимом фазовращателя. Это основной режим работы в большинстве аппаратных стоек ЧПУ.
Данная же структура используется и при унитарном коде (перемещение – количество импульсов и задание скорости – частота по данной координате), но вместо ПКФ и ЦАП используются ПЧФ и ПЧН.
Рис. 10.7. Структура следящего электропривода с фазовым индикаторным регулятором положения
Фазовый разностный режим работы устройства связи с электроприводом представлен на рис. 10.8. В данной структуре за счет уменьшения зоны работы ФД и того, что ФД работает на постоянной частоте , итоговая точность СЧПУ возрастает.
Недостаток данной структуры – датчик положения не дает информации об истинном положении привода (для индикации, например), а сразу рассогласование по положению.
Есть системы связи, работающие при амплитудно-индикаторном или амплитудно-разностном режиме работы измерителей рассогласования и датчиков положения*. Такие СЧПУ не нашли распространения, хотя обеспечивают повышенную точность в фазоимпульсных СЧПУ.
Рис. 10.8. Структура следящего электропривода с фазовым разностным регулятором положения
В амплитудно-индикаторном режиме на датчик подают
Uc1 = U1 sinωt, Uc2 = 0.
C датчика получаем Up1 = U2 sin sinωt, Up2 = U2 cos sinωt.
В амплитудно-разностном режиме
Uc1 = U1 sin sinωt, Uc2 = U1 cos sinωt,
Up1 = U2 sin(–)sinωt, Up2 = U2 cos(–)sinωt.
10.7. Расчетные соотношения для фазовых систем
В фазовых системах опорный сигнал после делителей частоты (см. рис. 10.7)
Uоп = U sinωt,
где ω =
,
N – коэффициент деления.
После ПЧФ и делителя частоты
Uвых = U sin(ωt+),
где – задание на перемещение, зависит от числа импульсов интерполятора fинт, которые придут за период опорной частоты.
Одному периоду фазовой системы соответствует перемещение, определяемое датчиком. Например, у линейных индуктосинов шаг датчика 2 мм. Если задана разрешающая способность СЧПУ (чаще 0,01 или 0,001 мм), то становится известно, сколько импульсов с интерполятора должно прийти, чтобы соответствовать периоду датчика.
Это число импульсов
равно N =
,
где L – шаг датчика (мм),
h – разрешающая способность системы (мм).
Для L = 2 мм, h = 0,001 N = 2000.
Именно это число N должно быть задано для делителей частоты (см. рис. 10.7), чтобы привязать период датчика к периоду опорной частоты конкретной СЧПУ.
Реально
максимальная частота
в СЧПУ не превышает 10 кГц (fоп
max
£
20 MГц).
Частота интерполятора не может превышать
fоп
max. Поэтому
при h =
0,001 максимальная рабочая скорость не
превышает Vmax
=
,
что явно недостаточно.
Иногда
можно хотя бы временно изменить N,
снижая разрешающую способность. Если
N
= 200, то при h
= 0,01, L
= 2 мм Vmax
=
=
.