
- •А.Н. Лыков автоматизация технологических процессов и производств
- •Оглавление
- •Введение
- •1. Эффективность автоматизации. Надежность
- •1.1. Необходимость автоматизации
- •1.2. Факторы, влияющие на эффективность автоматизации
- •1.3. Показатели социально-экономической эффективности
- •Окупаемость:
- •Усиление желания внедрять автоматизацию (человеческий фактор):
- •План-график автоматизации:
- •1.4. «Подводные камни» при автоматизации
- •Еще раз о человеческом факторе
- •Секрет высокой надежности – отношение к делу производственного персонала:
- •1.6. Проблемы с надежностью в России
- •Наработка на отказ различных счпу
- •Качество микросхем
- •Контрольные вопросы
- •2. Автоматизация в машиностроении, системы чпу
- •2.1. Системы автоматизации в машиностроении
- •2.2. История развития счпу (до 1990 года)
- •2.3. Классификация существующих счпу
- •2.4. Промышленные роботы
- •2.4.1. Промышленные роботы (история начального развития)
- •2.4.2. Необходимость роботов
- •2.4.3. Сферы применения роботов
- •2.4.4. Примеры применения роботов
- •2.5. Словарь терминов и определений в счпу
- •Контрольные вопросы
- •3. Информация в системах автоматизации
- •3.1. Точность информации
- •3.2. Дискретизация по уровню и по времени непрерывного сигнала
- •3.3. Аппаратные информационные уровни
- •3.4. Преобразователи информации
- •3.5. Уровни управления в системах автоматизации
- •3.6. Тенденции в построении производственных систем
- •3.7. Фазы информационных преобразований для станка с счпу
- •3.8. Стандартизация и унификация средств автоматизации
- •Контрольные вопросы
- •4. Кодирование информации
- •4.1. Буквенные коды
- •4.2. Буквенно-цифровые коды
- •4.3. Цифровые коды
- •Код Грея в датчиках положения
- •Контрольные вопросы
- •5. Интегральные преобразователи информации
- •5.1. Интегральные догические микросхемы
- •5.2. Цифроаналоговые преобразователи (цап)
- •5.3. Аналого-цифровые преобразователи (ацп)
- •5.4. Цифроаналоговый процессор км1813ве1
- •Контрольные вопросы
- •6. ПреобразоваТели информации
- •6.1. Преобразователь «частота – напряжение»
- •6.2. Преобразователь «частота – код»
- •6.3. Преобразователь «код – частота»
- •6.4. Преобразователь «унитарный код – фаза»
- •6.5. Преобразователь «фаза – код»
- •6.6. Преобразователь «фаза – напряжение»
- •6.7. Узлы гальванической развязки в системах автоматизации
- •Контрольные вопросы
- •7. Управляющие программы счпу
- •7.1. Структура управляющих программ для станков с чпу
- •7.2. Значения символов адресов
- •7.3. Формат кадра учпу
- •7.4. Повышение языкового уровня управляющих программ
- •Контрольные вопросы
- •8. Сап станков и роботов
- •8.1. Подготовка управляющей программы (уп)
- •8.2. Системы автоматизированного программирования уп
- •8.3. Системы cad/cam
- •8.3.1. Система AutoCad
- •8.3.2. Система bCad
- •8.3.2.1. Плоское черчение
- •8.3.2.2. Объемное моделирование
- •8.3.2.3. Генерация чертежей
- •8.3.2.4. Статистика и расчет
- •8.3.2.5. Получение реалистических изображений
- •8.3.2.6. Пользовательский интерфейс
- •8.3.2.7. Совместимость
- •8.3.2.8. Перспективы
- •8.3.3. Система ГеМма-3d при производстве технологической оснастки на оборудовании с чпу
- •8.3.4. Продукты adem cad/cam
- •8.3.4.2. Модуль adem nс
- •8.3.5. Графика-81
- •8.3.6. Базис 3.5
- •8.3.6.1. Аппаратное обеспечение
- •8.3.6.2. Интерфейс пользователя
- •8.3.6.3. Построение изображения
- •8.3.6.4. Ввод текстовой информации
- •8.3.6.5. Инженерные расчеты
- •8.3.6.6. Связь с другими приложениями
- •8.3.7.1. Твердотельное моделирование
- •8.3.7.2. Сборки
- •8.3.7.3. Полезные «мелочи»
- •Контрольные вопросы
- •9. Интерполяция. Аппаратные стойки чпу
- •9.1. Траектории движения
- •9.2. Основные задачи при интерполяции
- •9.3. Математическое решение уравнений движения
- •9.4. Реализация интегрирования в счпу
- •9.5. Счпу «Контур-2пт»*
- •9.6. Счпу «н22»**
- •9.7. Счпу «н33»*
- •9.8. Блок задания скорости (бзс) аппаратной стойки чпу
- •Контрольные вопросы
- •10. Системы связи счпу со станком
- •10.1. Позиционные кодовые счпу
- •10.2. Позиционная счетно-импульсная счпу
- •10.3. Контурные счпу
- •10.4. Частичная инвариантность по управлению
- •10.5. Первые поколения контурных счпу
- •10.6. Фазовый индикаторный и разностный режимы работы устройства связи с электроприводом
- •10.7. Расчетные соотношения для фазовых систем
- •10.8. Микропроцессорные стойки чпу
- •Контрольные вопросы
- •11. Микропроцессорные счпу и тенденции развития
- •11.1. Архитектура и возможности микропроцессорных систем управления типа сnс до 1990 года (однопроцессорные мпс км85, 2р-32м, 2с42-45, многопроцессорные мпс Нейрон и3, мс2101, 3с150, s8600)
- •11.2. Новые системы чпу
- •11.2.1. Архитектура открытой системы чпу
- •11.2.2. Открытое ядро чпу
- •11.2.3. Системы чпу с web-доступом
- •11.2.4. Система понятий стандарта iso 14649
- •11.2.5. Чпу, воспринимающие стандарт step-nc
- •11.2.6. Среда разработки управляющих программ для систем чпу AdvancEd
- •11.3. Примеры интеллектуальных счпу последнего поколения
- •12.2. Лвс: доступ к каналу, способы кодирования, типы сообщений, сетевые системы
- •Контрольные вопросы
- •13. Автоматизированные системы контроля и учета энергоресурсов (аскуэ)
- •13.1. Требования к автоматизированным системам контроля и учета энергоресурсов
- •13.2. Уровни аскуэ
- •13.3. Коммерческие и технические аскуэ
- •13.4. Первичные измерительные приборы
- •13.5. Первые российские аскуэ
- •13.6. Современные аскуэ
- •13.7. Аскуэ бытовых потребителей
- •13.8. Энергосбережение и аскуэ
- •Контрольные вопросы
- •14. Автоматизация котельных
- •14.1. Описание и классификация котельных установок
- •14.2. Котельная как объект регулирования
- •14.3. Регулирование нагрузки котла
- •14.4. Регулирование уровня воды в барабане котла
- •14.5. Регулирование температуры перегретого пара
- •14.6. Управление вентилятором
- •14.7. Управление дымососом
- •14.8. Система управления шиберами
- •14.9. Автоматика безопасности котельной
- •14.10. Определение параметров объекта регулирования, регуляторов и настройка аср Расчет параметров объекта управления
- •Регуляторы с им постоянной скорости
- •Технически оптимальная настройка регуляторов
- •15. Автоматизация турбомеханизмов и энергосбережение
- •15.1. Характеристика турбомеханизмов
- •15.2. Расчет мощности на валу турбомеханизма
- •15.3. Регулирование производительности турбомеханизмов
- •15.4. Особенности регулирования скорости турбомеханизмов
- •15.5. Расчет экономической эффективности применения частотно-регулируемого электропривода
- •Список ЛитературЫ
- •Приложение ктс «Ресурс»
- •Ктс «Альфа Смарт», «Альфа Центр»
- •Птк «эком»
- •Технические характеристики аскуэ «Континиум»
- •Регистраторы аварийных событий
- •Список сокращений
- •Автоматизация технологических процессов и производств
4.3. Цифровые коды
Цифровые коды
служат для записи как дискретной
(численной) информации, так и буквенной.
В табл. 4.3 приведены десятичные,
восьмеричные, шестнадцатеричные коды
для записи как цифр, так и буквенных
и символьных элементов. Цифровой код –
позиционный, т.е. значение кода зависит
от места (позиции), которое занимает та
или иная цифра. Число в позиционном коде
определяется по формуле
,
где i – номер разряда;
–
цифра, стоящая в i-м разряде; a –
основание системы счисления. В табл.
4.3 представлены основные цифровые коды
для десятичного числа 23,5. В этой таблице
показано, как можно преобразовать
десятичное число в двоично-десятичное
и из двоичного просто получить
восьмеричное или шестнадцатеричное
(символы 8-го числа от 0 до 7, символы
16-го: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).
Таблица 4.3
Различные цифровые коды для десятичного числа 23,5
10 |
2/10 |
2 |
8 |
16 |
23,5
510–1 + +3100 + + 2101 |
00100011,0101
(каждому разряду 10-го числа соответствуют 4 разряда 2-го числа) |
10111,1
1·2–1 + +1·20 + +1·21 + +1·22 + +0·23 + +1·24 |
27,4
4· 8–1 + + 7·81 + +2·81
010.111,100 – двоичное число |
17,8
8·16–1 + + 7· 160 + +1· 161
0001.0111,1000 – двоичное число |
За стандарт двоично-десятичного кода принята кодировка 1-2-4-8 (Binary Coded Decimal: BCD), так как она легко читается и контролируется. Возможно предложить еще 17 различных 2/10 кодов.* Двоично-десятичный код используется как переходный при введении оператором десятичной информации в ЭВМ с целью начального запоминания с последующим преобразованием в двоичный.
Восьмеричный код используется для распечатки адреса в системе команд DEC, шестнадцатеричный код – для распечатки адреса в системе команд INTEL.
Существуют еще разновидности цифровых кодов: унитарный, позиционный, код Грея.
Унитарный код – последовательность импульсов, несущая двойную информацию: частота импульсов, количество импульсов.
Позиционный код – это один из N информационных дискретных сигналов. Поэтому его нередко называют дискретным кодом (дискретная информация).
Код Грея – код датчика положения, в котором между двумя соседними значениями кода имеется разница только в одном разряде. Для 4-разрядного числа двоичный код и код Грея представлены в табл. 4.4.
Таблица 4.4
Код Грея в датчиках положения
Десятичное число |
Двоичное число |
Код Грея |
Десятичное число |
Двоичное число |
Код Грея |
0 |
0000 |
0000 |
8 |
1000 |
1100 |
1 |
0001 |
0001 |
9 |
1001 |
1101 |
2 |
0010 |
0011 |
10 |
1010 |
1111 |
3 |
0011 |
0010 |
11 |
1011 |
1110 |
4 |
0100 |
0110 |
12 |
1100 |
1010 |
5 |
0101 |
0111 |
13 |
1101 |
1011 |
6 |
0110 |
0101 |
14 |
1110 |
1001 |
7 |
0111 |
0100 |
15 |
1111 |
1000 |
Код Грея построен на основе диаграммы Карнауга, приведенной на рис. 4.2. Срелка показывает последовательность изменений одного из разрядов.
На рис. 4.3. изображены 4-разрядные датчики положения, которые работают по обычному коду и по коду Грея. Можно увидеть, что в датчике 1-го типа в одном из положений происходит изменение сразу по четырем разрядам (0000→1111). Это не позволяет получить простые достоверные датчики положения.
Рис. 4.2. Диаграмма Карнауга
Рис. 4.3. Оптические диски датчиков положения по двоичному коду и коду Грея
Перевод кода Грея в обычный двоичный код осуществляется по следующим правилам: первая единица со стороны старших разрядов остается без изменения, последующие цифры остаются без изменения, если число единиц, им предшествовавших старших разрядов четно, и инвертируются, если число единиц нечетно.