
Угловая(линейная) засечка
От пункта A с известными координатами XA, YA измерено расстояние S1 до определяемой точки P, а от пункта B с известными координатами XB, YB измерено расстояние S2 до точки P . Графическое решение. Проведем вокруг пункта A окружность радиусом S1 (в масштабе чертежа), а вокруг пункта B - окружность радиусом S2; точка пересечения окружностей является искомой точкой; задача имеет два решения, так как две окружности пересекаются в двух точках (рис.2.9). Исходные данные: XA, YA, XB, YB, Измеряемые элементы: S1, S2, Неизвестные элементы: X, Y. Аналитическое решение. Рассмотрим два алгоритма аналитического решения, один - для ручного счета (по способу треугольника) и один - для машинного счета. Рис.2.9 Алгоритм ручного счета состоит из следующих действий: решение обратной геодезической задачи между пунктами A и B и получение дирекционного угла αAB и длины b линии AB, вычисление в треугольнике ABP углов β1 и β2 по теореме косинусов: (2.29) вычисление угла засечки γ (2.30) вычисление дирекционных углов сторон AP и BP: пункт P справа от линии AB (2.31) пункт P слева от линии АВ (2.32) решение прямых геодезических задач из пункта A на пункт P и из пункта B на пункт P: 1-е решение (2.33) 2-е решение (2.34) Результаты обоих решений должны совпадать. Алгоритм машинного решения линейной засечки состоит из следующих действий: решение обратной геодезической задачи между пунктами A и B и получение дирекционного угла αAB и длины b линии AB, введение местной системы координат X'O'Y' с началом в точке A и осью O'X', направленной вдоль линии AB, и пересчет координат пунктов A и B из системы XOY в систему X'O'Y': (2.35) запись уравнений окружностей в системе X'O'Y': (2.36) и совместное решение этих уравнений, которое предусматривает раскрытие скобок во втором уравнении и вычитание второго уравнения из первого: (2.37) откуда (2.38) и (2.39) Если искомая точка находится слева от линии AB, то в формуле (2.39) берется знак "-", если справа, то "+". пересчет координат X' и Y' точки P из системы X'O'Y' в систему XOY по формулам (2.2):
Комбинаторные засечки
В рассмотренных способах решения засечек количество измерений принималось теоретически минимальным (два измерения), обеспечивающим получение результата. На практике для нахождения координат X и Y одной точки, как правило, выполняют не два, а три и более измерений расстояний и углов, причем эти измерения выполняются как на исходных пунктах, так и на определяемых; такие засечки называются комбинированными. Понятно, что в этом случае появляется возможность контроля измерений, и, кроме того, повышается точность решения задачи. Каждое измерение, вводимое в задачу сверх теоретически минимального количества, называют избыточным; оно порождает одно дополнительное решение. Геодезические засечки без избыточных измерений принято называть однократными, а засечки с избыточными измерениями - многократными. При наличии избыточных измерений вычисление неизвестных выполняют методом уравнивания. Алгоритмы строгого уравнивания многократных засечек применяются при автоматизированном счете на ЭВМ; для ручного счета используют упрощенные способы уравнивания. Упрощенный способ уравнивания какой-либо многократной засечки ( n измерений ) предусматривает сначала формирование и решение всех возможных вариантов независимых однократных засечек ( их число равно n-1 ), а затем - вычисление средних значений координат точки из всех полученных результатов, если они различаются между собой на допустимую величину.