
- •Глава I
- •§ 1. Математические понятия
- •Введение
- •Объем и содержание понятия
- •Определение понятий
- •Требования к определению понятий
- •§ 2. Математические предложения
- •Элементарные и составные предложения
- •Высказывания. Смысл слов «и», «или», «не»
- •Высказывательные формы
- •Смысл слов «все» и «некоторые»
- •Правила построения отрицаний высказываний,
- •Отношения следования и равносильности между
- •Необходимые и достаточные условия
- •§ 3. Математические доказательства
- •Дедуктивные рассуждения
- •Простейшие схемы дедуктивных рассуждений
- •§ 4. Текстовые задачи и их решение
- •Понятие текстовой задачи
- •Способы решения текстовых задач
- •Этапы решения задач арифметическими способами.
- •Приемы поиска плана решения задачи и его выполнение
- •Приемы проверки решения задачи
- •Решение задач алгебраическими способами
- •§ 5. Множества и операции над ними
- •Способы задания множеств
- •Отношения между множествами
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Множества и понятия
- •Пересечение множеств
- •Объединение множеств
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Законы пересечения и объединения множеств
- •Дополнение подмножества
- •Понятие разбиения множества на классы
- •Декартово умножение множеств
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Понятие отношения
- •Способы задания отношений
- •Отношение эквивалентности
- •Понятие соответствия
- •Соответствие, обратное данному
- •Взаимно однозначные соответствия
- •Равномощные множества
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Глава II
- •§ 7. Понятие числа
- •Порядковые и количественные натуральные числа. Счет
- •§ 8. Понятие действий над целыми
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Вычитание
- •Правила вычитания числа из суммы и суммы из числа
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Свойства множества целых неотрицательных чисел
- •§ 9. Смысл натурального числа и действий
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Натуральное число как значение длины отрезка
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 10. Запись целых неотрицательных чисел и алгоритмы действий над ними
- •О возникновении и развитии способов записи целых неотрицательных чисел
- •Вычитание многозначных чисел в десятичной системе счисления
- •Умножение многозначных чисел в десятичной системе счисления
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Свойства отношения делимости
- •Делимость суммы, разности и произведения целых неотрицательных чисел
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Признаки делимости на составные числа
- •Нахождение наибольшего общего делителя и наименьшего общего кратного чисел способом разложения на простые множители
- •Глава III расширение понятия числа
- •§ 12. Положительные рациональные числа
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Понятие положительного рационального числа
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Умножение и деление
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Упорядоченность множества положительных
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •Запись положительных рациональных чисел в виде десятичных дробей
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 13. Действительные числа
- •Понятие положительного иррационального числа
- •Действия над положительными действительными числами
- •Отрицательные числа
- •Глава IV
- •§ 14. Числовые равенства и неравенства
- •Об алфавите математического языка
- •Числовые выражения и выражения с переменными
- •Тождественные преобразования выражений
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 15. Уравнения и неравенства
- •Равносильность уравнений
- •Неравенства с одной переменной.
- •§ 16. Функции
- •График функции
- •Прямая пропорциональность
- •Обратная пропорциональность
- •Понятие величины
- •Понятие измерения величины
- •Из истории развития системы единиц величин
- •Международная система единиц
- •§ 18. Длина, площадь, масса, время
- •Масса тела и ее измерение
- •Зависимости между величинами
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •§ 3. Математические доказательства 35
- •§ 4. Текстовые задачи и их решение 51
- •1 Моисеев н. Н. Математика ставит эксперимент.— м., 1979.— с. 12.
- •1 11. Делимость целых неотрицательных чисел
- •2Понятие отношения делимости
§ 9. Смысл натурального числа и действий
НАД ЧИСЛАМИ — РЕЗУЛЬТАТАМИ ИЗМЕРЕНИЯ ВЕЛИЧИН
Человеку в практической деятельности приходится не только вести счет предметов, но и измерять различные величины: длину, массу, время и т. д. Поэтому к возникновению натуральных чисел привела не только потребность счета, но и задача измерения величин.
Выясним, какой смысл имеет натуральное число, если оно получено в результате измерения величины. Все теоретические факты, связанные с этим подходом к натуральному числу, рассмотрим на примере одной величины — длины отрезка.
Сравнение отрезков. Действия над отрезками
Пусть даны отрезки а и Ь. Отложим равные им отрезки на одном луче с началом О. Получим отрезки ОА = а и ОВ = Ь. Возможны три случая.
Точки А и В совпадут (рис. 105). Тогда О А и ОВ — это один отрезок, а отрезки а и Ь равны ему, значит, а = Ь.
Точка В лежит внутри отрезка ОА (рис. 106). Тогда говорят, что отрезок О В меньше отрезка О А (или отрезок О А больше отрезка ОВ), и пишут: ОВ<ОА (ОА>ОВ) или Ь<а (а>Ь).
Точка А лежит внутри отрезка ОВ (рис. 107). Тогда говорят, что отрезок О А меньше отрезка ОВ, и пишут: ОА<ОВ или а<.Ь (Ь > а).
Над отрезками выполняют различные действия.
Определение. Отрезок а называют суммой отрезков а\, вг, а„, если он является их объединением, никакие из отрезков не имеют общей внутренней точки (не налегают друг на друга) и последовательно прилегают один к другому концами.
Пишут: а = а| + аг + ... + ая.
Например, можно утверждать, что отрезок а, изображенный на рисунке 108, является суммой отрезков щ, аз, аз, оц.
ЦЕЛЫЕ НЕОТРИЦАТЕЛЬНЫЕ ЧИСЛА 4
Законы сложения и умножения 8
Правила вычитания и деления 12
основы 20
ПРЕДИСЛОВИЕ 3
ОБЩИЕ ПОНЯТИЯ МАТЕМАТИКИ 3
2. Объем и содержание понятия 6
3. Определение понятий 9
4. Требования к определению понятий 14
Упражнения 17
6. Высказывания. Смысл слов «и», «или», «не» 20
8. Смысл слов «все» и «некоторые» 24
§ 3. Математические доказательства 35
13. Дедуктивные рассуждения 35
14. Простейшие схемы дедуктивных рассуждений 41
15. Неполная индукция ’3 44
16. Способы доказательства истинности высказываний 47
§ 4. Текстовые задачи и их решение 51
17. Понятие текстовой задачи 51
18. Способы решения текстовых задач 53
111111111111111111111III1111 >мъ° 56
(л п пс=л п(в п с). (Л1)В)ис=Л11(вис). 79
2) С=((а, (Ь, <Г), (а, с)); 96
□ □ □ о о о о 137
"еотрииатель' ОООООКН8В2 145
«О О О О 141
^□□□□□□000 «О О О О О О 139
□ □□□□□□□□□□□ 158
& . 226
I „ 295
Определение. Разностью #
ЦЕЛЫЕ НЕОТРИЦАТЕЛЬНЫЕ ЧИСЛА 4
Законы сложения и умножения 8
Правила вычитания и деления 12
основы 20
ПРЕДИСЛОВИЕ 3
ОБЩИЕ ПОНЯТИЯ МАТЕМАТИКИ 3
2. Объем и содержание понятия 6
3. Определение понятий 9
4. Требования к определению понятий 14
Упражнения 17
6. Высказывания. Смысл слов «и», «или», «не» 20
8. Смысл слов «все» и «некоторые» 24
§ 3. Математические доказательства 35
13. Дедуктивные рассуждения 35
14. Простейшие схемы дедуктивных рассуждений 41
15. Неполная индукция ’3 44
16. Способы доказательства истинности высказываний 47