Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диф. 21-25.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
119.81 Кб
Скачать

3. Как зависит график распределения от средств измерения?

Некоторые особенности тестов или других средств измерения, применяющихся для сбора данных, могут также влиять на форму результирующего графика распределения. Так, если уровень сложности вопросов теста искусственно завышен или занижен, то это может сделать форму графика скошенной. Такое происходит, когда какой-нибудь тест предлагают пройти группе, для которой он не предназначен.

Очевидно, что на основании таких данных нельзя делать вывод об аномальном распределении умственных способностей среди детей или студентов колледжа. Скошенное распределение, полученное в этих случаях, будет свидетельствовать о том, что уровень сложности теста не включает в себя в равной мере более сложные и более простые задания. В одном случае все испытуемые покажут очень высокие значения, в то время как, если бы тест включал в себя вопросы посложнее, результаты испытуемых распределились бы по всей шкале и более равномерно. Подобным образом, большое количество нулевых значений или значений, близких к нулю, мы получим, если тест окажется для группы слишком сложным. Подбирая для данной группы тест, надо удостовериться, что испытуемые способны показывать результаты, которые будут отражены на обоих концах шкалы. Их показатели должны существенно отличаться как от нуля, так соответственно и от сверх¬высоких значений.

Другие случаи отклонений от нормального распределения могут так же иметь причиной неравенство значений шкалы. В таком тесте в центре шкалы ее деления располагались бы реже, чем на отрезках ее крайних значений. . Подобным образом, при увеличении числа пунктов на крайних отрезках шкалы, нормальное распределение может быть преобразовано и относительно плоское.

Теперь мы видим, что измерительная шкала может воздействовать на форму графика распределения по-разному. Строго говоря, невозможно определить истинное распределение, если у нас нетшкалы с равными единицами измерения.

В процессе создания теста нормальный график рассматривается скорее как методологическая проблема, чем как эмпирически наблюдаемый факт. Всякий раз, когда стандартизированная группа показывает распределение, которое нельзя признать нормальным, обычной реакцией должно быть изменение теста. Большинство тестов, таким образом, видоизменялись до тех пор, пока они не давали в популяции, для которой предназначались, распределения, приближенного к нормальному. Некоторые пункты шкалы удалялись или добавлялись, другие перемещались по шкале вверх или вниз; при этом исследователь каждый раз оценивал, к чему приводят подобные изменения, и, в конце концов, добивался желаемой приближенности распределения к нормальному виду. Поэтому, говоря, что данное распределение нормальное, мы подразумеваем, что был проведен процесс дотошной стандартизации данного теста. И наоборот, говоря, что данное распределение не соответствует норме, мы подразумеваем только то, что тест получился неудачным или что тест применялся к группе, для которой он был не пригоден.

22 БИЛЕТ