- •5 Какими характеристиками определяются дискретные системы идентификации?
- •1.1.2 2. Основные этапы математического моделирования
- •Запуск пакета MatLab?
- •10.Рабочая среда MatLab 6.Х содержит следующие элементы:
- •11. Назначение программы matlab.
- •15.Назовите два способа запуска пакета Simulink ?
- •13.Возможности моделирования, предоставляемые пакетом прикладных программ Control System Toolbox (сst) и matlab Simulink.
- •14.Основные этапы работы с программой.
- •16.Назовите основные разделы Simulink?
- •Методы определения амплитудно-частотных характеристик
- •Экспериментальный:
- •Аналитический:
- •40. Что такое «запасы устойчивости по фазе и по амплитуде»?
- •41. Какие различные формы имеет функция plot?
- •42. Какая функция позволяет выводить множество графиков в одном окне?
- •2.Содержание к разделу «Численные методы»
- •1.Общие понятия. Численные методы и математические модели га.
- •2.Постановка задачи. Решение уравнений с одной переменной.
- •3.Решение уравнений с одной переменной методом хорд.
- •4.Решение уравнений с одной переменной методом касательных (Ньютона).
- •5.Решение уравнений с одной переменной методом половинного деления.
- •1. Анализ существующих методов решения задачи
- •21.Постановка задачи численного интегрирования
- •22.Квадратурные формулы Ньютона-Котеса.
- •23. Численное интегрирование. Приближенное вычисление с помощью формул трапеций.
- •24. Численное интегрирование. Приближенное вычисление с помощью формул Симпсона. Формула Симпсона
- •25. Особенности задач численного дифференцирования. Формулы численного дифференцирования
- •28. Численные методы решения обыкновенных дифференциальных уравнений. Модификации метода Эйлера. Неявный метод Эйлера
- •29. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера – Коши. Метод Эйлера-Коши
- •30. Численные методы решения обыкновенных дифференциальных уравнений. Неявный метод Эйлера – Коши
- •31.Численные методы решения обыкновенных дифференциальных уравнений. Первый улучшенный метод Эйлера.
- •32.Численные методы решения обыкновенных дифференциальных уравнений. Метод Рунге-Кутты.
- •33.Численные методы решения обыкновенных дифференциальных уравнений. Метод Рунге-Кутты третьего порядка точности
- •34.Численные методы решения обыкновенных дифференциальных уравнений. Метод Рунге-Кутты четвертого порядка точности
- •35.Методы обработки и анализа экспериментальных данных. Сущность метода наименьших квадратов.
- •36.Метод наименьших квадратов. Виды приближающих функций. Метод наименьших квадратов
- •5 Билет
- •6 Билет
- •7 Билет
- •Понятие рекурсии.
- •Передача параметров
- •Локальные и глобальные переменные.
- •10.Строковые данные. Обработка символьных данных
- •11.Строковые данные. Программирование задач обработки символьных данных
- •12.Особенности программирования задач, включающих действия со структурами данных. Записи. Записи с вариантами. Оператор присоединения With.
- •Запись с вариантами.
- •13.Особенности программирования задач, включающих действия со структурами данных. Множества. Операции над множествами. Использование множеств при создании экспертных систем.
- •Операции над множествами Бинарные операции
- •Унарные операции
- •1. Объявление указателей
- •2. Выделение и освобождение динамической памяти
- •18. Структурное программирование
1.1.2 2. Основные этапы математического моделирования
1) Построение модели. На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.
2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.
3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.
4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.
5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.
Asel
Запуск пакета MatLab?
Интерфейс и возможности трех последних версий системы MATLAB в рамках
предназначения данной книги как самоучителя различаются незначительно. Од
нако при описании отдельных деталей системы желательно ориентироваться на
какуюлибо конкретную версию системы. В качестве таковой вначале рассмот
рим подверсию MATLAB R2006b. Она распространена намного больше, чем но
вейшие MATLAB R2007a,b. О новых возможностях их будет сказано немного по
зднее. Пока же отметим, что в рамках материалов, характерных для данной
книгисамоучителя, разница между различными версиями базовой системы
MATLAB практически отсутствует.
MATLAB (к примеру, R2006b) обычно запускается из главного меню операци
онной системы Windows XP или активизацией ярлыка с логотипом системы на
рабочем столе Windows. После запуска MATLAB на экране появляется основное
окно системы MATLAB, показанное на рис. 1.1. Оно имеет обычные средства
управления размерами, скрытия и закрытия. В окне командного режима показано
окно About MATLAB, которое выводится одноименной командой в позиции
Help
меню и позволяет уточнить версию системы.
Система готова к проведению вычислений в
командном режиме
. Полезно
знать, что в начале запуска автоматически выполняется команда
matlabrc
, кото
рая исполняет загрузочный файл
matlabrc.m
и файл
startup.m
, если таковой су
ществует. Эти файлы текстового формата выполняют начальную настройку тер
минала системы и задают ряд ее параметров.
10.Рабочая среда MatLab 6.Х содержит следующие элементы:
панель инструментов с кнопками и раскрывающимся списком;
окно с вкладками Launch Pad и Workspace, из которого можно получить доступ к различным модулям ToolBox и к содержимому рабочей среды;
окно с вкладками Command History и Current Directory, предназначенное для просмотра и повторного вызова ранее введенных команд, а также для установки текущего каталога;
командное окно, в котором находится приглашение к вводу » и мигающий вертикальный курсор;
строку состояния
