Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
B13 Карточки.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.54 Mб
Скачать

Вариант № 3713535

1. B 13 . Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да.

Ре­ше­ние.

Обо­зна­чим из­вест­ные ребра за и , а не­из­вест­ное за . Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да вы­ра­жа­ет­ся как

 

.

Диа­го­наль па­рал­ле­ле­пи­пе­да на­хо­дит­ся как

.

Вы­ра­зим :

.

Тогда пло­щадь по­верх­но­сти

Ответ: 64.

Ответ: 64

2. B 13 . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной ше­сти­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен , а вы­со­та равна 2.

Ре­ше­ние.

Сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка вы­ра­жа­ет­ся через ра­ди­ус впи­сан­ной в него окруж­но­сти как . Тогда пло­щадь бо­ко­вой по­верх­но­сти приз­мы вы­ра­жа­ет­ся фор­му­лой

 

.

Ответ: 24.

Ответ: 24

3. B 13 . Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 60. Пло­щадь одной его грани равна 12. Най­ди­те ребро па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ное этой грани.

Ре­ше­ние.

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен , где — пло­щадь грани, а — вы­со­та пер­пен­ди­ку­ляр­но­го к ней ребра. Тогда

 

Ответ: 5.

Ответ: 5

4. B 13 . В пра­виль­ной ше­сти­уголь­ной приз­ме все ребра равны 1. Най­ди­те угол . Ответ дайте в гра­ду­сах.

Ре­ше­ние.

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник :

 

Оста­лось найти диа­го­наль ос­но­ва­ния. В пра­виль­ном ше­сти­уголь­ни­ке углы между сто­ро­на­ми равны , тогда по тео­ре­ме ко­си­ну­сов для тре­уголь­ни­ка АВС имеем:

Так как — ост­рый, он равен

Ответ: 60.

Ответ: 60

5. B 13 . Куб впи­сан в шар ра­ди­у­са . Най­ди­те объем куба.

 

Ре­ше­ние.

Диа­метр шара, опи­сан­но­го во­круг куба, сов­па­да­ет с его диа­го­на­лью и вдвое боль­ше ра­ди­у­са. По­это­му диа­го­наль куба равна . Если ребро куба равно , то диа­го­наль куба да­ет­ся фор­му­лой . Сле­до­ва­тель­но, ребро куба равно 2, а его объем равен 8.

Ответ: 8.

Ответ: 8

6. B 13 . Най­ди­те пло­щадь по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 6 и вы­со­та равна 4.

Ре­ше­ние.

Пло­щадь по­верх­но­сти скла­ды­ва­ет­ся из пло­ща­ди ос­но­ва­ния и пло­ща­ди че­ты­рех бо­ко­вых гра­ней: . Апо­фе­му най­дем по тео­ре­ме Пи­фа­го­ра: . Тогда пло­щадь по­верх­но­сти пи­ра­ми­ды:

 

.

Ответ: 96.

Ответ: 96

7. B 13 . Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2. Объем па­рал­ле­ле­пи­пе­да равен 6. Най­ди­те пло­щадь его по­верх­но­сти.

Ре­ше­ние.

Най­дем тре­тье ребро из вы­ра­же­ния для объ­е­ма:

 

.

Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да

 

.

Ответ: 22.

Ответ: 22

8. B 13 . Ра­ди­у­сы двух шаров равны 6, 8. Най­ди­те ра­ди­ус шара, пло­щадь по­верх­но­сти ко­то­ро­го равна сумме пло­ща­дей их по­верх­но­стей.

Ре­ше­ние.

Из усло­вия най­дем, что ра­ди­ус та­ко­го шара

 

.

Ответ: 10.

Ответ: 10

9. B 13 . Сто­ро­ны ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь по­верх­но­сти этой пи­ра­ми­ды.

Ре­ше­ние.

Пло­щадь пи­ра­ми­ды равна

 

.

Пло­щадь бо­ко­вой сто­ро­ны пи­ра­ми­ды . Вы­со­ту тре­уголь­ни­ка най­дем по тео­ре­ме Пи­фа­го­ра: . Тогда пло­щадь по­верх­но­сти пи­ра­ми­ды

 

.

Ответ: 340.

Ответ: 340

10. B 13 . Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 3 и 4. Пло­щадь по­верх­но­сти этого па­рал­ле­ле­пи­пе­да равна 94. Най­ди­те тре­тье ребро, вы­хо­дя­щее из той же вер­ши­ны.

Вариант № 3713713

1. B 13 . Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы, пло­щадь бо­ко­вой по­верх­но­сти ко­то­рой равна 24, про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти от­се­чен­ной тре­уголь­ной приз­мы.

Ре­ше­ние.

Пло­щадь бо­ко­вых гра­ней от­се­чен­ной приз­мы вдвое мень­ше со­от­вет­ству­ю­щих пло­ща­дей бо­ко­вых гра­ней ис­ход­ной приз­мы. По­это­му пло­щадь бо­ко­вой по­верх­но­сти от­се­чен­ной приз­мы вдвое мень­ше пло­ща­ди бо­ко­вой по­верх­но­сти ис­ход­ной.

 

Ответ: 12.

Ответ: 12

2. B 13 . В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ребро , ребро , ребро . Точка  — се­ре­ди­на ребра Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через точки и .

Ре­ше­ние.

Се­че­ние пе­ре­се­ка­ет па­рал­лель­ные грани по па­рал­лель­ным от­рез­кам. По­это­му че­ты­рех­уголь­ник  — па­рал­ле­ло­грамм. Кроме того, ребро пер­пен­ди­ку­ляр­но гра­ням и , по­это­му углы и — пря­мые. Сле­до­ва­тель­но, се­че­ние  — пря­мо­уголь­ник.

 

Из пря­мо­уголь­но­го тре­уголь­ни­ка по тео­ре­ме Пи­фа­го­ра най­дем

 

 

Тогда пло­щадь пря­мо­уголь­ни­ка равна:

 

 

Ответ:5.

Ответ: 5

3. B 13 . Най­ди­те угол пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, для ко­то­ро­го =4, =3, =5. Дайте ответ в гра­ду­сах.

Ре­ше­ние.

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник По тео­ре­ме Пи­фа­го­ра

 

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник Так как = = то тре­уголь­ник яв­ля­ет­ся рав­но­бед­рен­ным, зна­чит, углы при его ос­но­ва­нии равны по .

Ответ: 45.

Ответ: 45

4. B 13 . В пра­виль­ной ше­сти­уголь­ной приз­ме все ребра равны 1. Най­ди­те угол . Ответ дайте в гра­ду­сах.

Ре­ше­ние.

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник :

 

Оста­лось найти диа­го­наль ос­но­ва­ния. В пра­виль­ном ше­сти­уголь­ни­ке углы между сто­ро­на­ми равны , тогда по тео­ре­ме ко­си­ну­сов для тре­уголь­ни­ка АВС имеем:

Так как — ост­рый, он равен

Ответ: 60.

Ответ: 60

5. B 13 . В пра­виль­ной четырёхуголь­ной пи­ра­ми­де с ос­но­ва­ни­ем бо­ко­вое ребро равно 5, сто­ро­на ос­но­ва­ния равна . Най­ди­те объём пи­ра­ми­ды.

Ре­ше­ние.

В ос­но­ва­нии пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды лежит квад­рат, вер­ши­на пи­ра­ми­ды про­еци­ру­ет­ся в его центр. Вве­дем обо­зна­че­ния, как по­ка­за­но на ри­сун­ке. Диа­го­на­ли квад­ра­та пер­пен­ди­ку­ляр­ны друг другу, тре­уголь­ник пря­мо­уголь­ный и рав­но­бед­рен­ный. В нем

 

 

Тогда из пря­мо­уголь­но­го тре­уголь­ни­ка на­хо­дим, что

От­ку­да для объ­е­ма пи­ра­ми­ды имеем:

 

 

Ответ: 24.

Ответ: 24

6. B 13 . Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да.

Ре­ше­ние.

Обо­зна­чим из­вест­ные ребра за и , а не­из­вест­ное за . Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да вы­ра­жа­ет­ся как

 

.

Диа­го­наль па­рал­ле­ле­пи­пе­да на­хо­дит­ся как

.

Вы­ра­зим :

.

Тогда пло­щадь по­верх­но­сти

Ответ: 64.

Ответ: 64

7. B 13 . Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 2 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 30 . В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем ко­ну­са равен

 

,

где – пло­щадь ос­но­ва­ния, а – вы­со­та ко­ну­са. Вы­со­ту ко­ну­са най­дем по свой­ству сто­ро­ны пря­мо­уголь­но­го тре­уголь­ни­ка, на­хо­дя­щей­ся на­про­тив угла в ° – она вдвое мень­ше ги­по­те­ну­зы, ко­то­рой в дан­ном слу­чае яв­ля­ет­ся об­ра­зу­ю­щая ко­ну­са. Ра­ди­ус ос­но­ва­ния най­дем по тео­ре­ме Пи­фа­го­ра:

 

.

Тогда объем

.

Ответ: 1.

Ответ: 1

8. B 13 . В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, бо­ко­вое ребро равно 10. Най­ди­те ее объем.

Ре­ше­ние.

По тео­ре­ме Пи­фа­го­ра най­дем, что по­ло­ви­на диа­го­на­ли ос­но­ва­ния равна 8. Тогда диа­го­наль ос­но­ва­ния равна 16, а сто­ро­на –   и пло­щадь

 

Тогда объем пи­ра­ми­ды

Ответ: 256.

Ответ: 256

9. B 13 . В пра­виль­ной ше­сти­уголь­ной приз­ме все ребра равны Най­ди­те рас­сто­я­ние между точ­ка­ми и

Ре­ше­ние.

рас­смот­рим пря­мо­уголь­ный тре­уголь­ник По тео­ре­ме Пи­фа­го­ра:

 

— боль­шая диа­го­наль пра­виль­но­го ше­сти­уголь­ни­ка, ее длина равна его удво­ен­ной сто­ро­не. По­это­му . По­сколь­ку имеем:

Ответ: 5.

 

Ответ: 5

10. B 13 . Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2. Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да равна 16. Най­ди­те его диа­го­наль.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]