Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
B13 Карточки.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.54 Mб
Скачать

Вариант № 3713411

1. B 13 . Диа­го­наль пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равна и об­ра­зу­ет углы 30 , 30 и 45 с плос­ко­стя­ми гра­ней па­рал­ле­ле­пи­пе­да. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ре­ше­ние.

Ребро па­рал­ле­ле­пи­пе­да на­про­тив угла в равно , по­сколь­ку об­ра­зу­ет с за­дан­ной диа­го­на­лью и диа­го­на­лью одной из гра­ней рав­но­бед­рен­ный тре­уголь­ник. Два дру­гие ребра по по­стро­е­нию лежат в пря­мо­уголь­ных тре­уголь­ни­ках на­про­тив угла в и равны, по­это­му по­ло­ви­не диа­го­на­ли. Тогда объем па­рал­ле­ле­пи­пе­да:

 

Ответ: 4.

Ответ: 4

2. B 13 . В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8. Бо­ко­вые ребра равны . Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

Ре­ше­ние.

По тео­ре­ме Пи­фа­го­ра длина ги­по­те­ну­зы тре­уголь­ни­ка в ос­но­ва­нии . По­сколь­ку ги­по­те­ну­за яв­ля­ет­ся диа­мет­ром ос­но­ва­ния опи­сан­но­го ци­лин­дра, его объем

 

.

Ответ: 125.

Ответ: 125

3. B 13 . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, впи­сан­ной в ци­линдр, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен , а вы­со­та равна 2.

Ре­ше­ние.

Сто­ро­на пра­виль­но­го тре­уголь­ни­ка вы­ра­жа­ет­ся через ра­ди­ус опи­сан­ной окруж­но­сти как . Пло­щадь бо­ко­вой по­верх­но­сти приз­мы тогда равна

 

.

Ответ: 36.

Ответ: 36

4. B 13 . Объем пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды 6. Сто­ро­на ос­но­ва­ния равна 1. Най­ди­те бо­ко­вое ребро.

Ре­ше­ние.

Пло­щадь ос­но­ва­ния равна

 

.

Из фор­му­лы для объ­е­ма пи­ра­ми­ды най­дем вы­со­ту:

 

.

В пра­виль­ном ше­сти­уголь­ни­ке сто­ро­на равна ра­ди­у­су опи­сан­ной окруж­но­сти, по­это­му най­дем бо­ко­вое ребро пи­ра­ми­ды по тео­ре­ме Пи­фа­го­ра:

 

.

Ответ: 7.

Ответ: 7

5. B 13 . Сто­ро­ны ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти этой пи­ра­ми­ды.

Ре­ше­ние.

Пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна

 

,

где – пе­ри­метр ос­но­ва­ния, а –апо­фе­ма. Апо­фе­му най­дем по тео­ре­ме Пи­фа­го­ра: . Тогда пло­щадь бо­ко­вой по­верх­но­сти

 

Ответ: 360.

Ответ: 360

6. B 13 . Ра­ди­ус ос­но­ва­ния ко­ну­са равен 3, вы­со­та равна 4. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

Ре­ше­ние.

Най­дем об­ра­зу­ю­щую по тео­ре­ме Пи­фа­го­ра: . Пло­щадь пол­ной по­верх­но­сти ко­ну­са

 

.

Ответ: 24.

Ответ: 24

7. B 13 . Ос­но­ва­ни­ем пря­мой тре­уголь­ной приз­мы слу­жит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 3 и 5. Объем приз­мы равен 30. Най­ди­те ее бо­ко­вое ребро.

Ре­ше­ние.

Объем пря­мой приз­мы равен где – пло­щадь ос­но­ва­ния, а – бо­ко­вое ребро. Тогда длина ее бо­ко­во­го ребра равна

 

.

Ответ: 4.

Ответ: 4

8. B 13 . Конус опи­сан около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды со сто­ро­ной ос­но­ва­ния 4 и вы­со­той 6. Най­ди­те его объем, де­лен­ный на .

Ре­ше­ние.

Ра­ди­ус ос­но­ва­ния ко­ну­са равен по­ло­ви­не диа­го­на­ли квад­ра­та :   . Тогда объем ко­ну­са, де­лен­ный на :

 

Ответ: 16.

Ответ: 16

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]