
- •Вариант № 3712875
- •Вариант № 3712978
- •8. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713210
- •1. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713330
- •3. B 13 . Радиусы трех шаров равны 6, 8 и 10. Найдите радиус шара, объем которого равен сумме их объемов.
- •6. B 13 . Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности.
- •7. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713411
- •6. B 13 . Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на .
- •7. B 13 . Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.
- •9. B 13 . Объем шара равен 288 . Найдите площадь его поверхности, деленную на .
- •Вариант № 3713471
- •2. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713535
- •3. B 13 . Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.
- •Вариант № 3713751
- •1. B 13 . Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.
- •Вариант № 3713843
- •1. B 13 . Объем шара равен 288 . Найдите площадь его поверхности, деленную на .
- •4. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713899
- •5. B 13 . Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности.
- •6. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •9. B 13 . Объем шара равен 288 . Найдите площадь его поверхности, деленную на .
- •Вариант № 3714009
- •Вариант № 3714196
- •4. B 13 . Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на .
- •Вариант № 3714293
- •2. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •5. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •9. B 13 . Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.
- •Вариант № 3714356
Вариант № 3714293
1. B 13 . Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3. Найдите объем пирамиды.
Решение.
Заметим, что
.
Поскольку , далее имеем:
.
Ответ: 4,5.
Ответ: 4,5
2. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
Решение.
Объем данной фигуры равен разности объемов цилиндра с радиусом основания 5 и высотой 5 и цилиндра с той же высотой и радиусом основания 2:
.
Ответ: 105.
Ответ: 105
3. B 13 . Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру.
Решение.
Объем прямоугольного параллелепипеда равен , где – площадь грани, а – высота перпендикулярного к ней ребра. Тогда площадь грани
.
Ответ: 8.
Ответ: 8
4. B 13 . В прямоугольном параллелепипеде ребро , ребро , ребро . Точка — середина ребра Найдите площадь сечения, проходящего через точки и .
Решение.
Сечение пересекает параллельные грани по параллельным отрезкам. Поэтому четырехугольник — параллелограмм. Кроме того, ребро перпендикулярно граням и , поэтому углы и — прямые. Следовательно, сечение — прямоугольник.
Из прямоугольного треугольника по теореме Пифагора найдем
Тогда площадь прямоугольника равна:
Ответ:5.
Ответ: 5
5. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
Решение.
Объем данной части цилиндра равен
.
Ответ: 3,75.
Ответ: 3,75
6. B 13 . Диагональ куба равна . Найдите его объем.
Решение.
Диагональ куба в раз больше его ребра. Поэтому ребро куба равно
Тогда объем куба .
Ответ: 729.
Ответ: 729
7. B 13 .
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем конуса равен 6. Найдите объем шара.
Решение.
. .
Ответ: 24.
Ответ: 24
8.
B 13 .
В правильной четырехугольной
пирамиде
точка
—
центр основания,
вершина,
,
.
Найдите длину отрезка
.
Решение.
Рассмотрим
треугольник
.
Он прямоугольный, т. к.
—
высота, она перпендикулярна
основанию
,
а значит и прямой
.
Тогда по теореме Пифагора
.
Ответ: 4.
Ответ: 4
9. B 13 . Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.
Решение.
Объем прямоугольного параллелепипеда равен , где — площадь грани, а — высота перпендикулярного к ней ребра. Тогда
Ответ: 5.
Ответ: 5
10.
B 13 .
В
треугольной призме две боковые
грани перпендикулярны.
Их общее ребро равно 10 и отстоит
от других боковых ребер на 6 и
8. Найдите площадь боковой
поверхности этой призмы.
Решение.
Для
вычисления боковой
поверхности призмы
воспользуемся формулой
, где
–
длина бокового ребра, а
–
периметр перпендикулярного
сечения призмы:
.
Ответ: 240.
Ответ: 240