Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
B13 Карточки.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.54 Mб
Скачать

Вариант № 3714196

1. B 13 . Около куба с реб­ром  опи­сан шар. Най­ди­те объем этого шара, де­лен­ный на .

Ре­ше­ние.

Пусть длина ребра куба равна а, а его диа­го­наль равна d. Ра­ди­ус опи­сан­но­го шара R равен по­ло­ви­не диа­го­на­ли куба:

 

.

По­это­му объем шара равен

Тогда

Ответ: 4,5.

Ответ: 4,5

2. B 13 . В пра­виль­ной ше­сти­уголь­ной приз­ме все ребра равны 1. Най­ди­те тан­генс угла

Ре­ше­ние.

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник катет ко­то­ро­го яв­ля­ет­ся боль­шей диа­го­на­лью ос­но­ва­ния. Длина боль­шей диа­го­на­ли пра­виль­но­го ше­сти­уголь­ни­ка равна его удво­ен­ной сто­ро­не: . По­сколь­ку имеем:

Ответ: 2.

Ответ: 2

3. B 13 . Най­ди­те объем V ко­ну­са, об­ра­зу­ю­щая ко­то­ро­го равна 2 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 30 . В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем ко­ну­са равен

 

,

где – пло­щадь ос­но­ва­ния, а – вы­со­та ко­ну­са. Вы­со­ту ко­ну­са най­дем по свой­ству сто­ро­ны пря­мо­уголь­но­го тре­уголь­ни­ка, на­хо­дя­щей­ся на­про­тив угла в ° – она вдвое мень­ше ги­по­те­ну­зы, ко­то­рой в дан­ном слу­чае яв­ля­ет­ся об­ра­зу­ю­щая ко­ну­са. Ра­ди­ус ос­но­ва­ния най­дем по тео­ре­ме Пи­фа­го­ра:

 

.

Тогда объем

.

Ответ: 1.

Ответ: 1

4. B 13 . Ра­ди­ус ос­но­ва­ния ко­ну­са равен 3, вы­со­та равна 4. Най­ди­те пло­щадь пол­ной по­верх­но­сти ко­ну­са, де­лен­ную на .

Ре­ше­ние.

Най­дем об­ра­зу­ю­щую по тео­ре­ме Пи­фа­го­ра: . Пло­щадь пол­ной по­верх­но­сти ко­ну­са

 

.

Ответ: 24.

Ответ: 24

5. B 13 . Най­ди­те объем части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной части ко­ну­са равен

 

.

Ответ: 607,5.

Ответ: 607,5

6. B 13 . Диа­го­наль куба равна . Най­ди­те его объем.

Ре­ше­ние.

Диа­го­наль куба в раз боль­ше его ребра. По­это­му ребро куба равно

Тогда объем куба   .

Ответ: 729.

Ответ: 729

7. B 13 . Гра­нью па­рал­ле­ле­пи­пе­да яв­ля­ет­ся ромб со сто­ро­ной 1 и ост­рым углом 60 . Одно из ребер па­рал­ле­ле­пи­пе­да со­став­ля­ет с этой гра­нью угол в 60 и равно 2. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ре­ше­ние.

Объем па­рал­ле­ле­пи­пе­да , где – пло­щадь одной из гра­ней, а – длина ребра, со­став­ля­ю­ще­го с этой гра­нью угол . Пло­щадь ромба с ост­рым углом в равна двум пло­ща­дям рав­но­сто­рон­не­го тре­уголь­ни­ка. Вы­чис­лим объем:

 

.

Ответ: 1,5.

Ответ: 1,5

8. B 13 . Ра­ди­у­сы двух шаров равны 6, 8. Най­ди­те ра­ди­ус шара, пло­щадь по­верх­но­сти ко­то­ро­го равна сумме пло­ща­дей их по­верх­но­стей.

Ре­ше­ние.

Из усло­вия най­дем, что ра­ди­ус та­ко­го шара

 

.

Ответ: 10.

Ответ: 10

9. B 13 .

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де из­вест­но, что , , . Най­ди­те длину ребра .

Ре­ше­ние.

Най­дем диа­го­наль пря­мо­уголь­ни­ка по тео­ре­ме Пи­фа­го­ра:

 

 

.

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник . По тео­ре­ме Пи­фа­го­ра

 

 

.

 

Ответ: 1.

Ответ: 1

10. B 13 . Сто­ро­на ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равна 2, бо­ко­вое ребро равно 4. Най­ди­те объем пи­ра­ми­ды.

Ре­ше­ние.

В пра­виль­ном ше­сти­уголь­ни­ке сто­ро­на равна ра­ди­у­су опи­сан­ной окруж­но­сти, по­это­му най­дем вы­со­ту пи­ра­ми­ды по тео­ре­ме Пи­фа­го­ра: . Пло­щадь ос­но­ва­ния

 

.

Тогда объем пи­ра­ми­ды

 

.

Ответ: 12.

Ответ: 12

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]