Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
B13 Карточки.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
2.54 Mб
Скачать

Вариант № 3714009

1. B 13 . Най­ди­те объем части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной части ко­ну­са равен

 

.

Ответ: 607,5.

Ответ: 607,5

2. B 13 . В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, бо­ко­вое ребро равно 10. Най­ди­те ее объем.

Ре­ше­ние.

По тео­ре­ме Пи­фа­го­ра най­дем, что по­ло­ви­на диа­го­на­ли ос­но­ва­ния равна 8. Тогда диа­го­наль ос­но­ва­ния равна 16, а сто­ро­на –   и пло­щадь

 

Тогда объем пи­ра­ми­ды

Ответ: 256.

Ответ: 256

3. B 13 . Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

Ре­ше­ние.

Длина диа­го­на­ли па­рал­ле­ле­пи­пе­да равна

 

.

Длина тре­тье­го ребра тогда . По­лу­чим, что объем па­рал­ле­ле­пи­пе­да

.

Ответ: 32.

Ответ: 32

4. B 13 . Се­ре­ди­на ребра куба со сто­ро­ной 1,9 яв­ля­ет­ся цен­тром шара ра­ди­у­са 0,95. Най­ди­те пло­щадь части по­верх­но­сти шара, ле­жа­щей внут­ри куба. В от­ве­те за­пи­ши­те .

Ре­ше­ние.

Так как се­ре­ди­на ребер куба яв­ля­ет­ся цен­тром сферы, диа­метр ко­то­рой равен ребру куба, в кубе со­дер­жит­ся 1/4 сферы и, со­от­вет­ствен­но, 1/4 ее по­верх­но­сти. Имеем:

 

.

Ответ: 0,9025.

Ответ: 0,9025

5. B 13 . Объем пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды 6. Сто­ро­на ос­но­ва­ния равна 1. Най­ди­те бо­ко­вое ребро.

Ре­ше­ние.

Пло­щадь ос­но­ва­ния равна

 

.

Из фор­му­лы для объ­е­ма пи­ра­ми­ды най­дем вы­со­ту:

 

.

В пра­виль­ном ше­сти­уголь­ни­ке сто­ро­на равна ра­ди­у­су опи­сан­ной окруж­но­сти, по­это­му най­дем бо­ко­вое ребро пи­ра­ми­ды по тео­ре­ме Пи­фа­го­ра:

 

.

Ответ: 7.

Ответ: 7

6. B 13 . Пря­мо­уголь­ный па­рал­ле­ле­пи­пед опи­сан около еди­нич­ной сферы. Най­ди­те его пло­щадь по­верх­но­сти.

Ре­ше­ние.

Вы­со­та и сто­ро­на та­ко­го па­рал­ле­ле­пи­пе­да равны диа­мет­ру сферы, то есть это куб со сто­ро­ной 2. Пло­щадь по­верх­но­сти куба со сто­ро­ной :

 

Ответ: 24.

Ответ: 24

7. B 13 . В куб с реб­ром 3 впи­сан шар. Най­ди­те объем этого шара, де­лен­ный на .

Ре­ше­ние.

Ра­ди­ус впи­сан­но­го в куб шара равен по­ло­ви­не длины ребра: . Тогда объем шара

 

.

Ответ: 4,5.

Ответ: 4,5

8. B 13 . В пра­виль­ной ше­сти­уголь­ной приз­ме все ребра равны 1. Най­ди­те угол . Ответ дайте в гра­ду­сах.

Ре­ше­ние.

Рас­смот­рим пря­мо­уголь­ный тре­уголь­ник :

 

Оста­лось найти диа­го­наль ос­но­ва­ния. В пра­виль­ном ше­сти­уголь­ни­ке углы между сто­ро­на­ми равны , тогда по тео­ре­ме ко­си­ну­сов для тре­уголь­ни­ка АВС имеем:

Так как — ост­рый, он равен

Ответ: 60.

Ответ: 60

9. B 13 . Три ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 4, 6, 9. Най­ди­те ребро рав­но­ве­ли­ко­го ему куба.

Ре­ше­ние.

Объем куба равен объ­е­му па­рал­ле­ле­пи­пе­да

 

Зна­чит, ребро куба

 

Ответ: 6.

Ответ: 6

10. B 13 . Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 24. Одно из его ребер равно 3. Най­ди­те пло­щадь грани па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ной этому ребру.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]