Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
B13 Карточки.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
2.54 Mб
Скачать

Вариант № 3713899

1. B 13 . Ра­ди­у­сы двух шаров равны 6, 8. Най­ди­те ра­ди­ус шара, пло­щадь по­верх­но­сти ко­то­ро­го равна сумме пло­ща­дей их по­верх­но­стей.

Ре­ше­ние.

Из усло­вия най­дем, что ра­ди­ус та­ко­го шара

 

.

Ответ: 10.

Ответ: 10

2. B 13 . Около куба с реб­ром  опи­сан шар. Най­ди­те объем этого шара, де­лен­ный на .

Ре­ше­ние.

Пусть длина ребра куба равна а, а его диа­го­наль равна d. Ра­ди­ус опи­сан­но­го шара R равен по­ло­ви­не диа­го­на­ли куба:

 

.

По­это­му объем шара равен

Тогда

Ответ: 4,5.

Ответ: 4,5

3. B 13 . В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де из­вест­ны длины рёбер: , , . Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через вер­ши­ны , и .

Ре­ше­ние.

Се­че­ние пе­ре­се­ка­ет па­рал­лель­ные грани по па­рал­лель­ным от­рез­кам. По­это­му се­че­ние  −  па­рал­ле­ло­грамм. Кроме того, ребро пер­пен­ди­ку­ляр­но гра­ням и . По­это­му углы и − пря­мые.По­это­му се­че­ние  — пря­мо­уголь­ник.

 

Из пря­мо­уголь­но­го тре­уголь­ни­ка най­дем

 

 

Тогда пло­щадь пря­мо­уголь­ни­ка равна:

 

 

Ответ:572.

Ответ: 572

4. B 13 . Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 24. Одно из его ребер равно 3. Най­ди­те пло­щадь грани па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ной этому ребру.

Ре­ше­ние.

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен , где – пло­щадь грани, а – вы­со­та пер­пен­ди­ку­ляр­но­го к ней ребра. Тогда пло­щадь грани

 

.

Ответ: 8.

Ответ: 8

5. B 13 . Ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2, 3. Най­ди­те его пло­щадь по­верх­но­сти.

Ре­ше­ние.

Пло­щадь по­верх­но­сти пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равна удво­ен­ной сумме по­пар­ных про­из­ве­де­ний его из­ме­ре­ний

 

.

Ответ: 22.

Ответ: 22

6. B 13 . Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной фи­гу­ры равен раз­но­сти объ­е­мов ци­лин­дра с ра­ди­у­сом ос­но­ва­ния 5 и вы­со­той 5 и ци­лин­дра с той же вы­со­той и ра­ди­у­сом ос­но­ва­ния 2:

 

.

Ответ: 105.

Ответ: 105

7. B 13 . Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 4. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, де­лен­ную на .

Ре­ше­ние.

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна , так как это пря­мо­уголь­ник. Пло­щадь бо­ко­вой по­верх­но­сти

 

.

Ответ: 4.

Ответ: 4

8. B 13 . На й­ди­те объем части ко­ну­са, изоб­ра­жен­ной на ри­сун­ке. В от­ве­те ука­жи­те .

Ре­ше­ние.

Объем дан­ной части ко­ну­са равен

 

.

Ответ: 216.

Ответ: 216

9. B 13 . Объем шара равен 288 . Най­ди­те пло­щадь его по­верх­но­сти, де­лен­ную на .

Ре­ше­ние.

Объем шара ра­ди­у­са вы­чис­ля­ет­ся по фор­му­ле , от­ку­да

 

.

Пло­щадь его по­верх­но­сти:

.

Ответ: 144.

Ответ: 144

10. B 13 . В ос­но­ва­нии пря­мой приз­мы лежит квад­рат со сто­ро­ной 2. Бо­ко­вые ребра равны . Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

Ре­ше­ние.

Диа­го­наль квад­ра­та в ос­но­ва­нии приз­мы яв­ля­ет­ся диа­мет­ром опи­сан­но­го во­круг приз­мы ци­лин­дра. Тогда его объем:

 

.

Ответ: 4.

Ответ: 4

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]