
- •Вариант № 3712875
- •Вариант № 3712978
- •8. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713210
- •1. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713330
- •3. B 13 . Радиусы трех шаров равны 6, 8 и 10. Найдите радиус шара, объем которого равен сумме их объемов.
- •6. B 13 . Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности.
- •7. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713411
- •6. B 13 . Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на .
- •7. B 13 . Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.
- •9. B 13 . Объем шара равен 288 . Найдите площадь его поверхности, деленную на .
- •Вариант № 3713471
- •2. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713535
- •3. B 13 . Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.
- •Вариант № 3713751
- •1. B 13 . Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро.
- •Вариант № 3713843
- •1. B 13 . Объем шара равен 288 . Найдите площадь его поверхности, деленную на .
- •4. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •Вариант № 3713899
- •5. B 13 . Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности.
- •6. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •9. B 13 . Объем шара равен 288 . Найдите площадь его поверхности, деленную на .
- •Вариант № 3714009
- •Вариант № 3714196
- •4. B 13 . Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на .
- •Вариант № 3714293
- •2. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •5. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
- •9. B 13 . Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.
- •Вариант № 3714356
Вариант № 3713899
1. B 13 . Радиусы двух шаров равны 6, 8. Найдите радиус шара, площадь поверхности которого равна сумме площадей их поверхностей.
Решение.
Из условия найдем, что радиус такого шара
.
Ответ: 10.
Ответ: 10
2. B 13 . Около куба с ребром описан шар. Найдите объем этого шара, деленный на .
Решение.
Пусть длина ребра куба равна а, а его диагональ равна d. Радиус описанного шара R равен половине диагонали куба:
.
Поэтому объем шара равен
Тогда
Ответ: 4,5.
Ответ: 4,5
3.
B 13 .
В прямоугольном параллелепипеде
известны
длины рёбер:
,
,
.
Найдите площадь сечения,
проходящего через вершины
,
и
.
Решение.
Сечение
пересекает параллельные
грани по параллельным отрезкам.
Поэтому сечение
−
параллелограмм. Кроме того,
ребро
перпендикулярно
граням
и
.
Поэтому углы
и
−
прямые.Поэтому сечение
—
прямоугольник.
Из
прямоугольного треугольника
найдем
Тогда площадь прямоугольника равна:
Ответ:572.
Ответ: 572
4. B 13 . Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру.
Решение.
Объем прямоугольного параллелепипеда равен , где – площадь грани, а – высота перпендикулярного к ней ребра. Тогда площадь грани
.
Ответ: 8.
Ответ: 8
5. B 13 . Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности.
Решение.
Площадь поверхности прямоугольного параллелепипеда равна удвоенной сумме попарных произведений его измерений
.
Ответ: 22.
Ответ: 22
6. B 13 . Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите .
Решение.
Объем данной фигуры равен разности объемов цилиндра с радиусом основания 5 и высотой 5 и цилиндра с той же высотой и радиусом основания 2:
.
Ответ: 105.
Ответ: 105
7. B 13 . Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндра, деленную на .
Решение.
Площадь осевого сечения цилиндра равна , так как это прямоугольник. Площадь боковой поверхности
.
Ответ: 4.
Ответ: 4
8. B 13 . На йдите объем части конуса, изображенной на рисунке. В ответе укажите .
Решение.
Объем данной части конуса равен
.
Ответ: 216.
Ответ: 216
9. B 13 . Объем шара равен 288 . Найдите площадь его поверхности, деленную на .
Решение.
Объем шара радиуса вычисляется по формуле , откуда
.
Площадь его поверхности:
.
Ответ: 144.
Ответ: 144
10.
B 13 .
В
основании прямой призмы
лежит квадрат со стороной 2.
Боковые ребра равны
.
Найдите объем цилиндра,
описанного около этой призмы.
Решение.
Диагональ
квадрата в основании
призмы
является
диаметром описанного
вокруг призмы цилиндра.
Тогда его объем:
.
Ответ: 4.
Ответ: 4