
Вариант № 3659615
1. B 6 . В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того. что Аня и Нина окажутся в одной группе.
Решение.
Пусть Аня оказалась в некоторой группе. Тогда для 20 оставшихся учащихся оказаться с ней в одной группе есть две возможности. Вероятность этого события равна 2 : 20 = 0,1.
Приведем комбинаторное решение.
Всего способов выбрать 3 учащихся из 21 учащегося класса равно . Выбрать пару «Аня и Нина» и поместить их в одну из семи групп можно способами. Добавить в эту группу еще одного из оставшихся 19 учащихся можно способами. Поэтому вероятность того, что девочки окажутся в одной группе равна
Приведем еще одно решение.
Рассмотрим первую группу. Вероятность того, что Аня окажется в ней, равна . Если Аня уже находится в первой группе, то вероятность того, что Нина окажется этой же группе равна . Поскольку все семь групп равноправны, вероятность того, что подруги окажутся в одной группе, равна
Ответ: 0,1.
Ответ: 0,1
2. B 6 . В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.
Решение.
Двухрублевые монеты могут лежать в одном кармане, если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:
Ответ: 0,4.
Приведем другое решение.
Количество способов взять 3 монеты из 6, чтобы переложить их в другой карман, равно Количество способов выбрать 3 рублевых монеты из 4 рублевых монет равно 4. Количество способов взять вместе с двумя двухрублевыми монетами одну рублевую монету из имеющихся 4 рублевых монет тоже равно 4. Поэтому искомая вероятность того, что двухрублевые монеты лежат в одном кармане, равна
Ответ: 0,4
3. B 6 . Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Решение.
Анализ пациента может быть положительным по двум причинам: А) пациент болеет гепатитом, его анализ верен; B) пациент не болеет гепатитом, его анализ ложен. Это несовместные события, вероятность их суммы равна сумме вероятностей этих событий. Имеем:
Ответ: 0,0545.
Ответ: 0,0545
4. B 6 . Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Решение.
Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: 0,52 · 0,3 = 0,156.
Ответ: 0,156.
Ответ: 0,156
5. B 6 . На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение.
Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: 0,2 + 0,15 = 0,35.
Ответ: 0,35.
Ответ: 0,35
6. B 6 . Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?
Решение.
В первом туре Руслан Орлов может сыграть с 26 − 1 = 25 бадминтонистами, из которых 10 − 1 = 9 из России. Значит, вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна
Ответ: 0,36.
Ответ: 0,36
7. B 6 . Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»?
Решение.
Сумма очков может быть равна 5 в четырех случаях: «3 + 2», «2 + 3», «1 + 4», «4 + 1».
Ответ: 4.
Ответ: 4
8. B 6 . Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.
Решение.
Команда может получить не меньше 4 очков в двух играх тремя способами: 3+1, 1+3, 3+3. Эти события несовместны, вероятность их суммы равна сумме их вероятностей. Каждое из этих событий представляет собой произведение двух независимых событий — результата в первой и во второй игре. Отсюда имеем:
Ответ: 0,32.
Ответ: 0,32
9. B 6 . В кармане у Миши было четыре конфеты — «Грильяж», «Белочка», «Коровка» и «Ласточка», а также ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Грильяж».
Решение.
В кармане было 4 конфеты, а выпала одна конфета. Поэтому вероятность этого события равна одной четвертой.
Ответ: 0,25.
Ответ: 0,25
10. B 6 . Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.