Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
B6 Карточки.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
537.06 Кб
Скачать

Вариант № 3659615

1. B 6 . В клас­се учит­ся 21 че­ло­век. Среди них две по­дру­ги: Аня и Нина. Класс слу­чай­ным об­ра­зом делят на 7 групп, по 3 че­ло­ве­ка в каж­дой. Найти ве­ро­ят­ность того. что Аня и Нина ока­жут­ся в одной груп­пе.

Ре­ше­ние.

Пусть Аня ока­за­лась в не­ко­то­рой груп­пе. Тогда для 20 остав­ших­ся уча­щих­ся ока­зать­ся с ней в одной груп­пе есть две воз­мож­но­сти. Ве­ро­ят­ность этого со­бы­тия равна 2 : 20 = 0,1.

 

При­ве­дем ком­би­на­тор­ное ре­ше­ние.

Всего спо­со­бов вы­брать 3 уча­щих­ся из 21 уча­ще­го­ся клас­са равно . Вы­брать пару «Аня и Нина» и по­ме­стить их в одну из семи групп можно спо­со­ба­ми. До­ба­вить в эту груп­пу еще од­но­го из остав­ших­ся 19 уча­щих­ся можно спо­со­ба­ми. По­это­му ве­ро­ят­ность того, что де­воч­ки ока­жут­ся в одной груп­пе равна

 

 

При­ве­дем еще одно ре­ше­ние.

Рас­смот­рим первую груп­пу. Ве­ро­ят­ность того, что Аня ока­жет­ся в ней, равна . Если Аня уже на­хо­дит­ся в пер­вой груп­пе, то ве­ро­ят­ность того, что Нина ока­жет­ся этой же груп­пе равна . По­сколь­ку все семь групп рав­но­прав­ны, ве­ро­ят­ность того, что по­дру­ги ока­жут­ся в одной груп­пе, равна

 

 

Ответ: 0,1.

Ответ: 0,1

2. B 6 . В кар­ма­не у Пети было 4 мо­не­ты по рублю и 2 мо­не­ты по два рубля. Петя, не глядя, пе­ре­ло­жил какие-то 3 мо­не­ты в дру­гой кар­ман. Най­ди­те ве­ро­ят­ность того, что обе двух­рублёвые мо­не­ты лежат в одном кар­ма­не.

Ре­ше­ние.

Двух­руб­ле­вые мо­не­ты могут ле­жать в одном кар­ма­не, если Петя пе­ре­ло­жил в дру­гой кар­ман три из че­ты­рех руб­ле­вых монет (а двух­руб­ле­вые не пе­ре­кла­ды­вал), или если пе­ре­ло­жил в дру­гой кар­ман обе двух­руб­ле­вые мо­не­ты и одну руб­ле­вую одним из трех спо­со­бов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Эти со­бы­тия не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий:

 

 

Ответ: 0,4.

При­ве­дем дру­гое ре­ше­ние.

Ко­ли­че­ство спо­со­бов взять 3 мо­не­ты из 6, чтобы пе­ре­ло­жить их в дру­гой кар­ман, равно Ко­ли­че­ство спо­со­бов вы­брать 3 руб­ле­вых мо­не­ты из 4 руб­ле­вых монет равно 4. Ко­ли­че­ство спо­со­бов взять вме­сте с двумя двух­руб­ле­вы­ми мо­не­та­ми одну руб­ле­вую мо­не­ту из име­ю­щих­ся 4 руб­ле­вых монет тоже равно 4. По­это­му ис­ко­мая ве­ро­ят­ность того, что двух­руб­ле­вые мо­не­ты лежат в одном кар­ма­не, равна

 

 

Ответ: 0,4

3. B 6 . Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Если ана­лиз вы­яв­ля­ет ге­па­тит, то ре­зуль­тат ана­ли­за на­зы­ва­ет­ся по­ло­жи­тель­ным. У боль­ных ге­па­ти­том па­ци­ен­тов ана­лиз даёт по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,9. Если па­ци­ент не болен ге­па­ти­том, то ана­лиз может дать лож­ный по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,01. Из­вест­но, что 5% па­ци­ен­тов, по­сту­па­ю­щих с по­до­зре­ни­ем на ге­па­тит, дей­стви­тель­но боль­ны ге­па­ти­том. Най­ди­те ве­ро­ят­ность того, что ре­зуль­тат ана­ли­за у па­ци­ен­та, по­сту­пив­ше­го в кли­ни­ку с по­до­зре­ни­ем на ге­па­тит, будет по­ло­жи­тель­ным.

Ре­ше­ние.

Ана­лиз па­ци­ен­та может быть по­ло­жи­тель­ным по двум при­чи­нам: А) па­ци­ент бо­ле­ет ге­па­ти­том, его ана­лиз верен; B) па­ци­ент не бо­ле­ет ге­па­ти­том, его ана­лиз ложен. Это не­сов­мест­ные со­бы­тия, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий. Имеем:

 

 

Ответ: 0,0545.

Ответ: 0,0545

4. B 6 . Если гросс­мей­стер А. иг­ра­ет бе­лы­ми, то он вы­иг­ры­ва­ет у гросс­мей­сте­ра Б. с ве­ро­ят­но­стью 0,52. Если А. иг­ра­ет чер­ны­ми, то А. вы­иг­ры­ва­ет у Б. с ве­ро­ят­но­стью 0,3. Гросс­мей­сте­ры А. и Б. иг­ра­ют две пар­тии, при­чем во вто­рой пар­тии ме­ня­ют цвет фигур. Най­ди­те ве­ро­ят­ность того, что А. вы­иг­ра­ет оба раза.

Ре­ше­ние.

Воз­мож­ность вы­иг­рать первую и вто­рую пар­тию не за­ви­сят друг от друга. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию их ве­ро­ят­но­стей: 0,52 · 0,3 = 0,156.

Ответ: 0,156.

Ответ: 0,156

5. B 6 . На эк­за­ме­не по гео­мет­рии школь­ни­ку достаётся один во­прос из спис­ка эк­за­ме­на­ци­он­ных во­про­сов. Ве­ро­ят­ность того, что это во­прос на тему «Впи­сан­ная окруж­ность», равна 0,2. Ве­ро­ят­ность того, что это во­прос на тему «Па­рал­ле­ло­грамм», равна 0,15. Во­про­сов, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам, нет. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся во­прос по одной из этих двух тем.

Ре­ше­ние.

Ве­ро­ят­ность суммы двух не­сов­мест­ных со­бы­тий равна сумме ве­ро­ят­но­стей этих со­бы­тий: 0,2 + 0,15 = 0,35.

Ответ: 0,35.

Ответ: 0,35

6. B 6 . Перед на­ча­лом пер­во­го тура чем­пи­о­на­та по бад­мин­то­ну участ­ни­ков раз­би­ва­ют на иг­ро­вые пары слу­чай­ным об­ра­зом с по­мо­щью жре­бия. Всего в чем­пи­о­на­те участ­ву­ет 26 бад­мин­то­ни­стов, среди ко­то­рых 10 участ­ни­ков из Рос­сии, в том числе Рус­лан Орлов. Най­ди­те ве­ро­ят­ность того, что в пер­вом туре Рус­лан Орлов будет иг­рать с каким-либо бад­мин­то­ни­стом из Рос­сии?

Ре­ше­ние.

В пер­вом туре Рус­лан Орлов может сыг­рать с 26 − 1 = 25 бад­мин­то­ни­ста­ми, из ко­то­рых 10 − 1 = 9 из Рос­сии. Зна­чит, ве­ро­ят­ность того, что в пер­вом туре Рус­лан Орлов будет иг­рать с каким-либо бад­мин­то­ни­стом из Рос­сии, равна

 

Ответ: 0,36.

Ответ: 0,36

7. B 6 . Иг­раль­ный кубик бро­са­ют два­жды. Сколь­ко эле­мен­тар­ных ис­хо­дов опыта бла­го­при­ят­ству­ют со­бы­тию «А = сумма очков равна 5»?

Ре­ше­ние.

Сумма очков может быть равна 5 в че­ты­рех слу­ча­ях: «3 + 2», «2 + 3», «1 + 4», «4 + 1».

 

Ответ: 4.

Ответ: 4

8. B 6 . Чтобы прой­ти в сле­ду­ю­щий круг со­рев­но­ва­ний, фут­боль­ной ко­ман­де нужно на­брать хотя бы 4 очка в двух играх. Если ко­ман­да вы­иг­ры­ва­ет, она по­лу­ча­ет 3 очка, в слу­чае ни­чьей — 1 очко, если про­иг­ры­ва­ет — 0 очков. Най­ди­те ве­ро­ят­ность того, что ко­ман­де удаст­ся выйти в сле­ду­ю­щий круг со­рев­но­ва­ний. Счи­тай­те, что в каж­дой игре ве­ро­ят­но­сти вы­иг­ры­ша и про­иг­ры­ша оди­на­ко­вы и равны 0,4.

Ре­ше­ние.

Ко­ман­да может по­лу­чить не мень­ше 4 очков в двух играх тремя спо­со­ба­ми: 3+1, 1+3, 3+3. Эти со­бы­тия не­сов­мест­ны, ве­ро­ят­ность их суммы равна сумме их ве­ро­ят­но­стей. Каж­дое из этих со­бы­тий пред­став­ля­ет собой про­из­ве­де­ние двух не­за­ви­си­мых со­бы­тий — ре­зуль­та­та в пер­вой и во вто­рой игре. От­сю­да имеем:

 

 

Ответ: 0,32.

Ответ: 0,32

9. B 6 . В кар­ма­не у Миши было че­ты­ре кон­фе­ты — «Гри­льяж», «Бе­лоч­ка», «Ко­ров­ка» и «Ла­сточ­ка», а также ключи от квар­ти­ры. Вы­ни­мая ключи, Миша слу­чай­но вы­ро­нил из кар­ма­на одну кон­фе­ту. Най­ди­те ве­ро­ят­ность того, что по­те­ря­лась кон­фе­та «Гри­льяж».

Ре­ше­ние.

В кар­ма­не было 4 кон­фе­ты, а вы­па­ла одна кон­фе­та. По­это­му ве­ро­ят­ность этого со­бы­тия равна одной чет­вер­той.

 

Ответ: 0,25.

Ответ: 0,25

10. B 6 . Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Физик» иг­ра­ет три матча с раз­ны­ми ко­ман­да­ми. Най­ди­те ве­ро­ят­ность того, что в этих играх «Физик» вы­иг­ра­ет жре­бий ровно два раза.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]