
- •1.Гидродинамиканың негізгі теңдеулері (тұтқыр сығылмайтын сұйықтың бірөлшемді моделі)
- •2. Құбыр бойымен қысымның азаюы (екпіннің жоғалуы).
- •3. Кенеттен, өзегіне қарағанда симметриялы кеңеюі кезіндегі, құбыр бойындағы екпіннің жоғалуы.
- •4.Ағыс режимдері. Ламинарлы және турбулентті ағыс.
- •2.1.1 Сурет - Сұйық қозғалыстың екі түрлі тәртібі
- •6. Сұйықтық манометрлері. Микроманометрлер. U-тәрізді манометрлер. Көлбеу түтікшесі бар микроманометрдің жұыс істеу принципі неге негіздлеген?
- •7. Статикалық қысымды өлшеу тәсілдері. Прандтль түтікшесі. Толық қысымды өлшеу тәсілдері.Пито түтікшесі
- •3.4 Сурет. Статикалық қысымды өлшеу: а – жазық қабырғада; б – қисықсызықты бетте
- •3.5 Сурет. Толық қысымның қабылдағышы
- •8. Құбыр ішіндегі ауаның жылдамдығын анықтау. Режимдік жылдамдық. Пито-Прандтль түтікшесі
- •9. Ағыстың жылдамдығын анықтау. Aнемометрлер. Термоанемометрлер.
- •10. Ағыстағы газдың температурасын анықтау. Тежелу температурасы. Температураны өлшейтін қабылдағыштар.
- •11. Аэродинамикалық құбырлар. Аэродинамикалық құбырлар түрлері.
- •12. Ұқсастық критерийлері. Геометриялық, динамикалық және кинематикалық ұқсастықтар. Пи теоремасы, өлшемсіз параметрлер.
- •Жергілікті кедергі коэффициенттерінің мәні
- •14.Белгісіз сұйықтың тығыздығын анықтау.
- •16. Дыбыс жылдамдығына жуық және транс дыбыс жылдамдықты аэродинамикалық құбырлар.
- •17. Ағыстағы газдың температурасын анықтау. Тежелу температурасы. Температураны өлшейтін қабылдағыштар.
- •19.Зертханалық жұмыс. Стокс әдісі бойынша сұйықтың тұтқырлық коэффициентін анықтау(глицерин).
- •20. Зертханалық жұмыс.Стокс әдісі бойынша сұйықтың тұтқырлық коэффициентін анықтау(гицерин мен мотор майын салыстыру).
- •21. Зертханалық жұмыс.Пуазейль әдісі бойынша сұйықтың тұтқырлық коэффициентін анықтау.
- •22.Зертханалық жұмыс.Бернулли интегралының қолданылуын тексеру. «Гидродинамика» тақтасы.
- •23. Зертханалық жұмыс. Бернулли теңдеуінің диаграммасын тұрғызу. Бернулли теңдеуін графикте кескіндеу, пьезометрлік сызық пен толық қысым сызықтарын тұрғызу. «Гидродинамика» тақтасы.
- •26. Зертханалық жұмыс. Құбырдың кенеттен кеңейген кездегі жергілікті гидравликалық кедергінің әсерінен қысымның азаюын зерттеу. «Гидродинамика» тақтасы.
- •27. Зертханалық жұмыс.Ағыс режимдерінің ауысуын зерттеу. Рейнольдс тәжірибесі. «Гидродинамика» тақтасы.
- •28.Зертханалық жұмыс.Құбыр бойындағы қысымның азаюы. «Гидравлика» тақтасы.
- •29. Зертханалық жұмыс. Құбыр бойындағы сұйық ағынның гидравликалық үйкеліс коэффициентін анықтау. Гидравлика тақтасы.
- •30. Зертханалық жұмыс. Құбырдың кенеттен кеңейген жеріндегі пайда болған жергілікті гидраликалық кедергінің әсерінен қысымның азаюын зерттеу. Гидравлика тақтасы.
21. Зертханалық жұмыс.Пуазейль әдісі бойынша сұйықтың тұтқырлық коэффициентін анықтау.
Сұйықтың маңызды физикалық қасиеттерінің бірі - тұтқырлық. Тұтқырлық (немесе ішкі үйкеліс деп те атайды) - бұл нақты сұйықтардың бір қабатының екінші қабатына қатысты орын ауыстыруына кедергі жасайтын қасиеті. Нақты сұйықтарың бір қабатының екінші қабатына қатысты орын ауыстыруы кезінде қабат бетіне бағытталған ішкі үйкеліс күштері пайда болады. Бұл күштердің әсері жылдам қозғалатын сұйық қабатының тарапынан жәй қозғалатын қабатына үдеткіш күштің әсер етуінен және жәй қозғалатын сұйық қабатының тарапынан жылдам қозғалатын қабатына тежегіш күштің әсер етуінен байқалады.
Сұйықтың тұтқырлығын анықтаудың бірнеше әдістері бар. Олар сұйық ішінде жәймен қозғалатын сфералық пішіндегі кішкентай денелердің жылдамдығын өлшеуге негізделген Стокс әдісі және жіңішке түтіктен (капиллярдан) аққан сұйықтың ламинарлық ағысына негізделген Пуазейль әдісі. Ал, бұл жұмыста сұйық тұткырлығының температураға тәуелділігі зерттеледі. Тәжірибе Ресейдің «Владис» ғылыми-зерттеу орталығында жасалған «Термодинамикадан зертханалық кешен – 1» қондырғысында және Стокс әдісімен сұйықтың тұтқырлығын анықтайтын құрылғыда жүргізіледі. Алғашқы тәжірибенің мәнісі мынада: түтік арқылы қуыстан сұйықтың ағу уакыты сұйықтың тұтқырлығына пропорционал және оның тығыздығына кері пропорционал. Пропорционалдык коэффициент қондырғының параметрлерімен және қуыстағы сұйықтың берілген алғашқы және соңғы деңгейімен анықталады.
Тұтқырлықтың
температураға тәуелділігін өлшеуге
арналган құралдың схемасы 1-суретте
көрсетілтен. Автоклавқа капилляр-вискозиметр
бұралып бекітіледі және оған түтік
толық батып тұратындай етіп
деңгейге
дейін сұйық құйылады (1а-сурет). Қуыстан
ауаны сорғанда қуысқа сұйық тартылады,
бұл кезде өлшеу түтікшедегі сұйық
деңгейі санақтың берілген алғашқы
деңгейінен
10-15 мм төмен
түседі (1б-сурет). Содан кейін қуыс пен
атмосфераны қосатын кранды ашқанда,
сұйық алғашқы деңгейіне
қарай қозғала бастайды. Сұйықтың
ден
екінші берілген
деңгейге
дейінгі арақашықтықты жүріп өтетін
уақыты өлшенеді. Бұл уақыт сұйық
тұтқырлығына пропорционал.
а б
1-сурет. Тұтқырлықтың температураға тәуелділігін
өлшеуге арналған құралдың схемасы
Тұтқырлықтың температураға тәуелділігі мына тәжірибелік есептеу формуласымен анықталады:
,
мұндағы
сұйықтың
белгілі бір температураға сәйкес
тұтқырлығы,
сұйықтың
бөлме температурасына сәйкес
тұтқырлығы,
белгілі
бір температура кезіндегі
сұйықтың
деңгейден
деңгейге
дейінгі арақашықтықты жүріп өту
уақыты,
сұйықтың
бөлме температурасындағы
деңгейден
деңгейге
дейінгі арақашықтықты жүріп өту уақыты.
Тәжірибеден алынған тұтқырлықтың температураға тәуелділік графигі 2-суретте көрсетілген. Бұдан шығатын қорытынды мынадай: сұйықтың тұтқырлығы температураға тәуелді; температура көтерілгенде тұтқырлық кемиді.
Тәжірибеде
сұйық ретінде су алынған. Судың тұтқырлық
коэффициентінің сандық мәнін есептеу
үшін Стокс әдісі пайдаланылды. Бөлме
температурасындағы судың тұтқырлығы
·мПа·с
, ал
-
дағы тұтқырлығы
мПа·с
-ке тең екені анықталды, яғни бұл әдіс
бойынша да температура көтерілгенде
сұйықтың тұтқырлығы кемиді.
2-сурет. Тәжірибеден алынған тұтқырлықтың температураға тәуелділігі
Сұйықтың тұтқырлығының температураға тәуелділігінің табиғатта және техникада маңызы зор. Оған мысал ретінде, өзен суларының қысқы күнге карағанда жаздыгүні жылдамырақ ағуын, мұнайды тасымалдау кезінде кұбырларды жылумен оқшаулауды немесе парафинді мұнайдың кұбыр ішімен жақсы жүруі үшін қосымша жылу берілуін және автокөліктерді жүргізу алдында жанар майды қыздыруын айтуға болады.
Түтікше арқылы сұйықтың немесе газдың ағуы үшін қысымдардың кейбір айырмашылығы қажет. Ұзындығы l түтікше арқылы τ уақыт ішінде ағатын сұйықтың (газдың) V көлемі және түтікше ұштарындағы Δр қысымдардың айырмашылығы арасындағы тәуелділік Пуазейль формуласымен көрсетіледі
(2.1)
мұнда r – трубканың радиусы; η - сұйық немесе газ тұтқырлығы.
(2.1) формуласы бойынша тұтқырлықты анықтау үшін ағым ламинарлы болуы керек, яғни сұйықтың (газдың) қабаттары араласпай ағуы керек. Құйынды (турбулентті) ағын үшін Пуазейль формуласы қолданылмайды. Әдеттегі жылдамдықтарда құйындар пайда болмау үшін түтікше жіңішке болуы керек.
Тұтқырлы сұйықтың ағу сипаты толығырақ v кинематикалық тұтқырлықпен анықталады
мұнда ρ – сұйықтың тығыздығы.
Қондырғының суреттелуі
Тұтқырлықты анықтауға құралдар вискозиметрлер деп аталады.
Пуазейль формуласына енетін шамаларды r, l және Δр өлшеу қиын, сондықтан берілген вискозиметрде сұйықтың қозғалысын тұтқырлығы белгілі η0, мысалы судың, эталонды сұйықтың қозғалысымен салыстыру әдісімен анықтауға жүгінеді.
Оствальдің капиллярлы вискозиметрі 2.1 суретте келтірілген.
Сурет 2.1.
Вискозиметрдің бір тізесі капиллярлы түтік болып келеді. Судың белгілі бір көлемін вискозиметрдің кең тізесіне құяды, ал одан кейін грушамен басқа тізеге оның деңгейі А белгісінен біраз жоғары болғанша құяды, және грушаны алып тастап, осы деңгейдің тұрақталуын бақылайды. Мениск А белгісінен өткен кезде, секундомерді қосады, ал В белгісінен өткен кезде - тоқтатады. Осылайша судың А және В белгілері арасында өту уақытын табады. Сұйықтың ламинарлы ағысы кезінде l ұзындығы бар капилляр арқылы осы көлемді өту уақыты сондай болады. Осылайша зерттелетін сұйықтың А және Б белгілері арасында өтудің τ уақытын анықтайды. Зерттелетін сұйық көлемін судың көлеміне тең етіп алады.
Капиллярдағы сұйықтар гидростатикалық қысым әсерімен қозғалады
мұнда ρ – сұйықтың тығыздығы; h – вискозиметрдің екі тізелерінде сұйықтың деңгейлерінің айырмашылығы.
Капилляр арқылы өтетін сұйықтардың тең көлемдері үшін жазуға болады
осыдан
немесе
(2.2)
және
формулаға
қойып,(8), аламыз
немесе
осыдан
(2.3)
мұнда v – зерттелетін сұйықтың кинематикалық тұтқырлығы; v0 – судың кинематикалық тұтқырлығы; τ – зерттелетін сұйықтың аяқталу уақыты; τ0 – судың өту уақыты.
Құрылғының тұрақтысын белгілейік
(2.4)
Онда (2.3) формула келесі түрге келеді
v = А·τ. (2.5)
Зертханалық вискозиметр сорпаның тұтқырлығын анықтау үшін пайдаланылады. Әрекет етуінің принципі бірдей температуралар мен қысымда капиллярлардағың бірдей қималарында сұйықтардың өту жылдамдықтары осы сұйықтардың тұтқырлығына тәуелділігіне негізделген.
Пуазейль формуласынан көрініп тұрғандай, бірдей капиллярлар бойынша уақыттың бірдей аралықтары арасында сұйықтардың көлемдері осы сұйықтардың тұтқырлықтарына кері пропорционалды
Зертханалық вискозиметр бөлшектенген А1 және А2 капиллярлардан тұрады (сурет 2.2).
Сурет 2.2.
А1 капиллярына дистилляцияланған сұйықтың белгілі бір мөлшерін құяды және Б кранын жабады. Бұл А капиллярына зерттелетін сұйықты құюға мүмкіндік береді, сондай-ақ судың деңгейі өзгермейді. Егер Б кранын ашып, вискозиметрде разрядталуды жасасақ, онда сұйықтардың бірдей уақыт аралығындағы жылжуы олардың тұтқырлықтарына кері пропорционалды болады
немесе
(2.6)
мұнда η – зерттелетін сұйықтың тұтқырлығы; η0 – судың тұтқырлығы.
Егер судың тұтқырлығын бірге тең деп алсақ, ал сұйық өткен жолды вискозиметрдің бір бөліміне тең болса, онда (2.6) формуласының негізінде сұйықтың тұтқырлығы осы су өткен l0 жолына тең болады.