
- •2. Дії над матрицями. Властивості дії над матрицями.
- •3. Визначники квадратних матриць Способи обчислення.
- •6. Мінори та алгебраїчні доповнення.
- •4. Визначник n-го порядку Теорема Лапласа
- •5. Визначники. Властивості визначників.
- •7. Обернена матриця. Алгоритм оберненої матриці.
- •8. Ранг матриці Властивості рангу матриці. Елементарні перетворення матриці.
- •Властивості:
- •Елементарні перетворення:
- •9. Основні поняття системи n лінійних алгебраїчних рівнянь з n змінними. Правило Крамера.
- •Правило Крамера
- •10. Матричний метод розв’язання слар
- •11.Теорема Кронекера-Капеллі. Алгоритм розвязування слар
- •12. Метод Гаусса.
- •13. Метод Жорданна-Гаусса.
- •15. Скалярний і векторний добуток. Властивості векторного добутку.
- •16. Мішаний добуток. Властивості мішаного добутку.
- •17. Векторний простір, його розмірність і базис. Розклад вектора за базисом. Лінійно залежні і лінійно незалежні системи векторів.
- •18. Рівняння лінії на площині. Вивести канонічне та параметричне рівняння прямої
- •19. Вивести рівняння прямої, що проходить через дві точки і рівняння прямої у відрізках на осях.
- •20. Векторне рівняння прямої та загальне рівняння прямої і його частинні випадки.
- •21. Нормальне рівняння прямої та рівняння пучка прямих.
- •22. Канонічне рівняння прямої. Умови паралельності та перпендикулярності.
- •23. Рівняння з кутовим коефіцієнтом. Відстань від точки до прямої.
- •24. Кут між прямими, що задані рівнянням з кутом коефіцієнтом. Умови паралельності та перпендикулярності.
- •25. Матриці, основні поняття. Різновиди матриць
- •26.Дії над матрицями. Властивості дій над матрицями
- •27.Визначники квадратних матриць. Способи обчислення визначників
- •28. Визначник n-го порядку. Теорема Лапласа
- •29. Визначники. Властивості визначників
- •30. Мінори та алгебраїчні доповнення
- •31. Різновиди рівняння площини у просторі за 3 точками, у відрізках на осях, нормальне.
- •32. Рівняння площини, що проходить через задану точку перпендикулярно до заданого вектора. Загальне рівняння площини.
- •33. Кут між площинами. Умови паралельності і перпендикулярності двох площин. Відстань від точки до площини.
- •34. Різновиди рівняння прямої в просторі: канонічне, параметричне, за 2 точками. Пряма як перетин двох площин.
- •35. Кут між прямими у просторі. Кут між прямою і площиною. Умови паралельності та перпендикулярності прямої і площини. Знаходження точки перетину прямої і площини.
- •36. Поняття кривих ліній другого порядку. Дослідження рівняння другого порядку. Коло.
- •37. Еліпс: означення, рівняння, графік, вершина, півосі, фокуси, ексцентриситет, директриси.
- •38. Гіпербола.
- •39. Парабола.
- •40. Поняття числової послідовності: формула п-го члена; зростаюча, спадна, обмежена послідовність. Поняття границі числової послідовності.
- •41. Геометрична інтерпретація границі послідовності. Основні властивості границі послідовності.
- •42. Границя функції в точці і на нескінченності: означення, геометрична інтерпретація означення, приклади. Односторонні границі функції в точці.
- •43. Нескінченно малі функції в точні і на нескінченності, означення, властивості, геометрична інтерпретація.
- •45. Теорема про зв’язок між нескінченно малими та великими функціями. Теорема про зв'язок міх нескінченно малою функцією та границею функції.
- •47. Властивості функції, які мають границі в точці: єдність границі, граничний перехід у нерівності, границя проміжної функція, обмеженість функції в точці.
- •48. Властивості границь функції:границя сталої, суми, добутку, частки функцій, границя степеневої функції.
- •49. Розкриття невизначеного вигляду , ,(∞-∞)
- •50. Перша та друга границі та наслідки з них.
- •51. Неперервність функції в точці: означення Коші та означення в термінах приростів функції та аргументу. Застосування поняття неперервності при обчисленні границь функції.
- •52. Властивості функцій у точці. Теорема про неперервність елементарних функцій.
- •53. Властивості функцій неперервних на відрізку. Геометрична інтерпретація цих властивостей.
- •54. Точки розриву функції.
- •55. Задачі, що приводять до поняття похідної.
- •56. Означення похідної. Диференційованість та неперервність функцій в точці і на проміжку.
- •57. Правила диференціювання функцій.
- •59. Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
- •60. Похідна складної і оберненої функції
- •61 Диференціювання параметрично заданих функцій
- •62 Диференціювання неявно заданих функцій
- •63 Похідна степенево-показннкових функцій
- •64. Похідні внщнх порядків
- •65 Диференціал та його властивості
- •66 Застосування диференціала до наближених обчислень
- •67 Правило Лапіталя
- •68 Застосування правила Лапіталя у невизначеностях виду
- •69 Необхідна й достатня ознака зростання (спадання) функції
- •70 Екстремум функції необхідна та достатня умова існування екстремуму
- •71 Опуклість, вгнутість, точкн перегину
- •72. Опуклість, вгнутість, точкн перегину
- •73.Асимптоти графіка функції
- •74 Функції кілької змінних. Основні поняття
- •75 Функції двох змінних. Область визначення. Лінії рівня
- •76. Лінії рівня функції двох змінних.
- •77.Частиний приріст і частині похідні першого порядку
- •81. Градієнт
- •82. Похідні вищих порядків
- •83. Алгоритм дослідження функції на екстремум за допомогою першої похідної
- •84. Алгоритм дослідження на опуклість і вгнутість
- •85. Загальна схема побудови графыка ф-ї за допомогою похідної
- •86. Правило Лопіталя
- •87. Екстремум ф-ї, необхідна та достатня умови існування екстремуму
- •88. Частинний приріс і частинні похідні першого порядку
- •94. Знаходження екстремуму функції від багатьох змінних
- •95. Знаходження умовного екстремуму.
- •96. Знаходження найбільшого і найменшого значення ф-ї в оласті d
- •97. Поняття первісної
- •98. Невизначений інтеграл.
- •99. Метод безпосереднього інтегрування
- •100. Інтегрування підстановкою ( метод заміни змінної)
- •101.Інтегрування частинами
- •102.Інтегрування виразів, що містять у знаменнику квадратний тричлен
- •103.Інтегрування виразів, що містять у знаменнику квадратний тричлен
- •104 .Метод невизначених коефіцієнтів
- •105.Інтегрування функцій, що містять ірраціональності.
- •106.Інтегрування тригонометричних функцій
- •107.Інтегрування найпростіших раціональних дробів.
- •108.Інтегрування найпростіших раціональних дробів
- •109.Визначений інтеграл та його властивості.
- •110.Задача, що призводить до поняття визначеного інтеграла
- •111.Формула Ньютона –Лейбніца, для обчислення визначених інтегралів.
- •112. Метод безпосереднього інтегрування визначених інтегралів
- •113.Метод інтегрування заміни змінної у визначеному інтегралі.
- •114.Метод інтегрування частинами у визначеному інтегралі.
- •115.Застосування визначеного інтеграла для обчислення площ фігур обмежених лініями.
- •120. Метод найменших квадратів.
- •121. Поняття ряду. Збіжність ряду та його сума.
- •122.Властивості збіжних рядів.
- •123. Необхідна ознака збіжності ряду.
- •124.Еталонні ряди
- •131.Абсолютна та умовна збіжність рядів.
- •132. Функціональні ряди. Основні поняття.
- •133.Степеневі ряди. Основні поняття. Теорема Абеля.
- •134. Радіус, інтервал, область збіжності ряду.
- •135. Ряд Тейлора.
- •136. Ряд Маклорена
- •137. Використання рядів до наближених обчислень функції
- •138. . Використання рядів до наближених обчислень функцій.
- •139. Диференціальні рівняння. Основні поняття та означення
- •140.Диференціальні рівняння першого порядку.Основні поняття.
- •141.Диференціальні рівняння з відокремлюваними змінними.
- •142.Задачі Коші.
- •143.Однорідні диференціальні рівняння першого порядку.
- •144.Лінійні диференціальні рівняння першого порядку.
- •145.Диференціальні рівняння другого порядку. Основні поняття.
- •146. Диференціальні рівняння другого порядку,що допускають пониження порядку.
- •147.Рівняння Бернулі.
- •150.Метод невизначених коефіцієнтів при розв’язуванні лінійних неоднорідних диференціальних рівнянь другого порядку.
111.Формула Ньютона –Лейбніца, для обчислення визначених інтегралів.
Якщо
функція
—
неперервна для
то визначений інтеграл від функції
на проміжку
дорівнює приросту первісної функції
на цьому проміжку, тобто
де
112. Метод безпосереднього інтегрування визначених інтегралів
Для обчислення визначеного інтеграла при умові існування первісної користуються формулою Ньютона-Лейбніца:
З цієї формули видно порядок обчислення визначеного інтегралу:
1. знайти невизначений інтеграл від даної функції;
2. в отриману первісну підставити на місце аргументу спочатку верхню, а потім нижню межу інтеграла;
3. знайти приріст первісної, тобто обчислити інтеграл
113.Метод інтегрування заміни змінної у визначеному інтегралі.
Заміна змінної у визначеному інтегралі здійснюється за формулою
Метод підстановки у визначеному інтегралі
Теорема: Якщо: 1) f(x) – неперервна для x[a;b]; 2) ()=а, ()=b; 3) x=(t) та ‘(t) – неперервні для t [;]; 4) при t [;]x [a;b], то
Зауваження: При заміні змінної інтегрування у визначеному інтегралі змінюються межі інтегрування і тому нема потреби повертатись до початкової змінної.
114.Метод інтегрування частинами у визначеному інтегралі.
Інтегрування частинам у визначеному інтегралі
Теорема:
Якщо ф-ії u(x) та v(x) мають неперервні
похідні для x[a;b],
то
115.Застосування визначеного інтеграла для обчислення площ фігур обмежених лініями.
Якою б не була криволінійна фігура, що обмежена неперервними кривими лініями, шляхом її розсікання лініями паралельними осям координат, обчислення площі фігури можна звести до обчислення площ розглянутих нижче фігур.
І. Фігура
обмежена лініями
,
y
= 0, x
= a,
x
= b
(рис. 8.5). Функція
— неперервна та
Площа S
такої криволінійної трапеції за
геометричним змістом визначеного
інтеграла така:
.
Якщо
при виконанні всіх інших умов
(рис. 8.6),
|
|
|
Рис. 8.5 |
Рис. 8.6 |
Рис. 8.7 |
ІІ.
Фігура обмежена лініями
(рис. 8.7).
Функція
— неперервна та
Площа S
такої фігури буде
116.Невласний інтеграла з нескінченою верхнею межею
Невласний інтеграла з нескінченою верхнею межею має вигляд:
(-;b]
117.Невласний інтеграла з нескінченою нижнею межею
(;
118.Відмінність між невласними інтегралами І та ІІ роду
Підкреслимо суттєву відмінність між криволінійними інтегралами: на відміну від криволінійного інтеграла першого роду криволінійний інтеграл другого роду змінює свій знак на протилежний при зміні напряму шляху інтегрування:
119 Невласний інтеграл ІІ роду.
Нехай
функція
визначена і неперервна при
,
а в точці
вона або невизначена, або має розрив
другого роду. Тому говорити про інтеграл
як про границю інтегральної суми
неможливо, тому що функція
не є неперервною на відрізку
і, внаслідок цього, границя інтегральної
суми, в класичному розумінні, не може
існувати.
Означення
1.
Якщо існує скінчена лівостороння границя
,
то цю границю називають невласним
інтегралом від розривної функції на
відрізку
і вважають, що
.
У
цьому випадку інтеграл називають
збіжним, а саму функцію
інтегрованою на відрізку
.
Якщо границя рівна
,
або зовсім не існує, то інтеграл розбіжний.
Аналогічно
визначається невласний інтеграл другого
роду, якщо функція неперервна при
,
а в точці
вона або невизначена, або має розрив
другого роду:
.