
- •Основная задача динамики Основная задача динамики
- •Инерциальная систем координат связанная с Землёй
- •Единство понятия массы
- •Единицы массы
- •Закон сохранения
- •Равнодействующая
- •Понятие массы
- •«Школьное» определение импульса
- •Обобщённый импульс в аналитической механике
- •Формальное определение импульса
- •Импульс в квантовой механике Формальное определение
- •Определение через волны де Бройля
- •Заключение
- •Второй закон Ньютона
- •Другая формулировка Второго закона Ньютона . Импульс материальной точки
- •Третий закон Ньютона
- •Историческая формулировка
- •Кинематическая вязкость
- •Ньютоновские и неньютоновские жидкости
- •Вязкость аморфных материалов
- •Сила вязкого трения
- •Закон Гука
- •Нелинейные деформации
- •Пластические деформации
- •Обобщённый закон Гука
- •Законы Ньютона в неинерциальных системах отсчета
- •Состояние отсутствия веса (невесомость) наступает при удалении тела от притягивающего объекта, либо когда тело находится в свободном падении, то есть . Вес и масса
- •Интересные факты
- •Вес в авиации
- •Создание единой теории фундаментальных взаимодействий
- •Закон сохранения импульса. Центр инерции. Движение центра инерции. Связь закона сохранения импульса с принципом относительности Галилея
- •Принцип относительности Галилея и закон сохранения импульса
- •Обеспечивает передвижение ракетного двигателя и связанного с ним аппарата в сторону, противоположную направлению реактивной струи Формула при отсутствии внешних сил[2]
- •Доказательство
- •Уравнение Мещерского[2]
- •Формула Циолковского[3]
- •Момент импульса замкнутой системы сохраняется. Момент импульса в классической механике
- •Определение
- •Вычисление момента
- •Сохранение углового момента
- •Момент импульса в электродинамике
- •Момент импульса в квантовой механике Оператор момента
- •Симметрия вращения
- •Вычисление момента импульса
- •Предыстория
- •Единицы
- •Специальные случаи Формула момента рычага
- •Два тела с небольшой разницей в массах движущиеся по круговым орбитам вокруг общего центра масс. Этот специфический тип орбиты подобен системе Плутон - Харон. Постановка задачи
- •Движение центра масс (первая задача)
- •Движения вектора смещения (вторая задача)
- •Решение задачи двух тел
- •Движение двух тел в плоскости
- •Общее решение для силы, зависящей от расстояния
- •Применение
- •Задача двух тел в ото
- •Первый закон Кеплера (закон эллипсов)
- •Второй закон Кеплера (закон площадей)
- •Третий закон Кеплера (гармонический закон)
- •Работа в термодинамике
- •Работа силы в теоретической механике
- •Определение
- •Размерность и единицы
- •Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы. Единицы измерения
- •Мощность в механике
- •Электрическая мощность
- •Приборы для измерения мощности
Кинематическая вязкость
В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной
и эта величина получила название кинематической вязкости. Здесь ρ, - плотность жидкости; η - динамическая вязкость (см. выше).
Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В систему СИ эта величина переводится следующим образом:
1 сСт = 1мм2 / 1c = 10 − 6 м2 / c
Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.
Для двухфазных жидкостей характерно свойство тиксотропии.
Ньютоновские и неньютоновские жидкости
Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):
где σi,j — тензор вязких напряжений.
Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.
Вязкость аморфных материалов
Вязкость аморфных материалов (например, стекла или расплавов), это термически активизируемый процесс[1]:
где Q — энергия активации вязкости (кДж/моль), T — температура (К), R — универсальная газовая постоянная (8,31 Дж/моль•К) и A — некоторая постоянная.
Вязкое течение в аморфных материалах
характеризуется отклонением от закона
Аррениуса: энергия
активации вязкости Q
изменяется от большой величины QH
при низких температурах (в стеклообразном
состоянии) на малую величину QL
при высоких температурах (в жидкообразном
состоянии). В зависимости от этого
изменения аморфные материалы
классифицируются либо как сильные,
когда
,
или ломкие, когда
.
Ломкость
аморфных материалов численно
характеризуется параметром
ломкости Доримуса
:
сильные материалы имеют RD
< 2, в то время как ломкие материалы
имеют
.
Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:
с постоянными A1, A2, B, C и D, связанными с термодинамическими параметрами соединительных связей аморфных материалов.
В узких температурных интервалах недалеко от температуры стеклования Tg это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.
Вязкость
Если температура существенно ниже температуры стеклования T < Tg, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса
с высокой энергией активации QH = Hd + Hm, где Hd — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm — энтальпия их движения. Это связано с тем, что при T < Tg аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.
При T > > Tg двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса
но с низкой энергией активации QL
= Hm. Это связано с тем, что
при
аморфные
материалы находятся в расправленном
состоянии и имеют подавляющее большинство
соединительных связей разрушенными,
что облегчает текучесть материала.