
- •Основная задача динамики Основная задача динамики
- •Инерциальная систем координат связанная с Землёй
- •Единство понятия массы
- •Единицы массы
- •Закон сохранения
- •Равнодействующая
- •Понятие массы
- •«Школьное» определение импульса
- •Обобщённый импульс в аналитической механике
- •Формальное определение импульса
- •Импульс в квантовой механике Формальное определение
- •Определение через волны де Бройля
- •Заключение
- •Второй закон Ньютона
- •Другая формулировка Второго закона Ньютона . Импульс материальной точки
- •Третий закон Ньютона
- •Историческая формулировка
- •Кинематическая вязкость
- •Ньютоновские и неньютоновские жидкости
- •Вязкость аморфных материалов
- •Сила вязкого трения
- •Закон Гука
- •Нелинейные деформации
- •Пластические деформации
- •Обобщённый закон Гука
- •Законы Ньютона в неинерциальных системах отсчета
- •Состояние отсутствия веса (невесомость) наступает при удалении тела от притягивающего объекта, либо когда тело находится в свободном падении, то есть . Вес и масса
- •Интересные факты
- •Вес в авиации
- •Создание единой теории фундаментальных взаимодействий
- •Закон сохранения импульса. Центр инерции. Движение центра инерции. Связь закона сохранения импульса с принципом относительности Галилея
- •Принцип относительности Галилея и закон сохранения импульса
- •Обеспечивает передвижение ракетного двигателя и связанного с ним аппарата в сторону, противоположную направлению реактивной струи Формула при отсутствии внешних сил[2]
- •Доказательство
- •Уравнение Мещерского[2]
- •Формула Циолковского[3]
- •Момент импульса замкнутой системы сохраняется. Момент импульса в классической механике
- •Определение
- •Вычисление момента
- •Сохранение углового момента
- •Момент импульса в электродинамике
- •Момент импульса в квантовой механике Оператор момента
- •Симметрия вращения
- •Вычисление момента импульса
- •Предыстория
- •Единицы
- •Специальные случаи Формула момента рычага
- •Два тела с небольшой разницей в массах движущиеся по круговым орбитам вокруг общего центра масс. Этот специфический тип орбиты подобен системе Плутон - Харон. Постановка задачи
- •Движение центра масс (первая задача)
- •Движения вектора смещения (вторая задача)
- •Решение задачи двух тел
- •Движение двух тел в плоскости
- •Общее решение для силы, зависящей от расстояния
- •Применение
- •Задача двух тел в ото
- •Первый закон Кеплера (закон эллипсов)
- •Второй закон Кеплера (закон площадей)
- •Третий закон Кеплера (гармонический закон)
- •Работа в термодинамике
- •Работа силы в теоретической механике
- •Определение
- •Размерность и единицы
- •Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы. Единицы измерения
- •Мощность в механике
- •Электрическая мощность
- •Приборы для измерения мощности
Симметрия вращения
Операторы момента импульса обычно встречаются при решении задач сферической симметрии в сферических координатах. Тогда момент импульса в пространственном отображении:
Когда находят собственные значения этого оператора, получают следующее:
где
— сферические функции.
Вычисление момента импульса
Если имеется материальная точка массой
,
двигающаяся со скоростью
и
находящаяся в точке, описываемой
радиус-вектором
,
то момент импульса вычисляется по
формуле:
где
—
знак векторного
произведения.
Чтобы рассчитать момент импульса тела, его надо разбить на бесконечно малые кусочки и векторно просуммировать их моменты как моменты импульса материальных точек, то есть взять интеграл:
Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.
Закон сохранения момента импульса есть проявление изотропности пространства.
Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — векторная физическая величина, равная произведению радиус-вектора проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
Момент силы
В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси вращения рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси вращения которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние, до оси вращения которого 6 метров. Более точно, момент силы частицы определяется как векторное произведение:
где — сила, действующая на частицу, а — радиус-вектор частицы.
Предыстория
Строго говоря, вектор, обозначающий момент сил, введен искусственно, так как является удобным при вычислении работы по криволинейному участку относительно неподвижной оси и удобен при вычислении общего момента сил всей системы, так как может суммироваться. Для того, чтобы понять откуда появилось обозначение момента сил и как до него додумались, стоит рассмотреть действие силы на рычаг, относительно неподвижной оси.
Работа, совершаемая при действии силы на рычаг , совершающего вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.
Пусть под действием этой силы конец
рычага смещается на бесконечно малый
отрезок
,
которому соответствует бесконечно
малый угол
.
Обозначим через
вектор,
который направлен вдоль бесконечно
малого отрезка
и
равен ему по модулю. Угол между вектором
силы
и
вектором
равен
,
а угол
между
вектором
и
вектором силы
.
Следовательно, бесконечно малая работа
,
совершаемая силой
на
бесконечно малом участке
равна
скалярному произведению вектора
и
вектора силы, то есть
.
Теперь попытаемся выразить модуль вектора через радиус вектор , а проекцию вектора силы на вектор , через угол .
В первом случае, используя теорему
Пифагора, можно записать следующее
равенство
,
где в случае малого угла справедливо
и
следовательно
Для проекции вектора силы
на
вектор
,
видно, что угол
,
так как для бесконечно малого перемещения
рычага
,
можно считать, что траектория перемещения
перпендикулярна рычагу
,
а так как
,
получаем, что
.
Теперь запишем бесконечно малую работу
через новые равенства
или
.
Теперь видно, что произведение
есть
не что иное как модуль векторного
произведения векторов
и
,
то есть
,
которое и было принято обозначить за
момент силы
или
модуля вектора момента силы
.
И теперь полная работа записывается
очень просто
или
.